A. | (-∞,-4]∪[3,+∞) | B. | (-∞,-2]∪[-1,+∞) | C. | [-2,-1] | D. | [-4,3] |
分析 作出不等式组对应的平面区域,利用z的几何意义结合直线的斜率公式进行求解即可.
解答 解:作出不等式组对应的平面区域,
$z=\frac{y-4}{x-3}$的几何意义是区域内的点到定点(3,4)的斜率
由图象知z大于等于PA的斜率,z小于等于PB的斜率,
∵A(2,1),B(4,0),
∴$z=\frac{y-4}{x-3}$=$\frac{1-4}{2-3}$≥3;则$z=\frac{y-4}{x-3}$=$\frac{0-4}{4-3}$≤-4,
即,(-∞,-4]∪[3,+∞).
故选:A.
点评 本题主要考查线性规划的应用,利用直线斜率的几何意义以及数形结合是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | $\frac{5}{3}$ | B. | $\frac{5}{3}$ 或$\frac{5}{4}$ | C. | $\frac{5}{4}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | 4 | C. | 6 | D. | 多于6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{y^2}{3}-\frac{x^2}{6}=1$ | B. | $\frac{x^2}{3}-\frac{y^2}{6}=1$ | C. | $\frac{x^2}{6}-\frac{y^2}{3}=1$ | D. | $\frac{y^2}{6}-\frac{x^2}{3}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1 | B. | $\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1 | C. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{100π}{9}$ | B. | $\frac{142π}{9}$ | C. | $\frac{10π}{3}$ | D. | 9π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com