精英家教网 > 高中数学 > 题目详情

【题目】在数列中,.

1)判断数列是否为等比数列?并说明理由;

2)若对任意正整数恒成立,求首项的取值范围.

【答案】1)答案见解析.(2

【解析】

1)转化条件得,由等比数列的概念即可得解;

2)易得当时,符合条件;当时,,根据为奇数、为偶数分类讨论,由恒成立问题的解决办法即可得解.

1)因为,所以

所以

所以

所以当时,

所以当时,数列不是等比数列;

,即时,,所以

所以当时,数列是等比数列;

2)由(1)知,当时,,所以恒成立;

时,数列是等比数列,且首项为,公比为

所以

.

为奇数时,,所以.

单调递减,所以时,取得最大值,所以

为偶数时,,所以.

单调递增,所以当时,的最小值为2,所以

所以

综上,首项的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某海轮以每小时30海里的速度航行,在点测得海面上油井在南偏东,海轮向北航行40分钟后到达点,测得油井在南偏东,海轮改为北偏东的航向再行驶80分钟到达点,则两点的距离为(单位:海里)

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:

赔付金额()

0

1 000

2 000

3 000

4 000

车辆数()

500

130

100

150

120

(1)若每辆车的投保金额均为2800,估计赔付金额大于投保金额的概率.

(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网站针对“2016年春节放假安排开展网上问卷调查,提出了AB两种放假方案,调查结果如表:(单位:万人)

人群

青少年

中年人

老年人

支持A方案

200

400

800

支持B方案

100

100

n

已知从所有参与调查的人中任选1人是老年人的概率为.

(1)n的值;

(2)从参与调查的老年人中,用分层抽样的方法抽取6人,在这6人中任意选取2人,求恰好有1支持B方案的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】绵阳是党中央、国务院批准建设的中国唯一的科技城,重要的国防科研和电子工业生产基地,市某科研单位在研发过程中发现了一种新合金材料,由大数据测得该产品的性能指标值值越大产品的性能越好)与这种新合金材料的含量(单位:克)的关系为:当时,的二次函数;当时,测得部分数据如表:

(单位:克)

1)求关于的函数关系式

2)求该新合金材料的含量为何值时产品的性能达到最佳.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中选出2名志愿者,参加某项服务工作.

(1)求选出的两名志愿者都是获得书法比赛一等奖的同学的概率;

(2)求选出的两名志愿者中一名是获得书法比赛一等奖,另一名是获得绘画比赛一等奖的同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知梯形如图(1)所示,其中 ,四边形是边长为的正方形,现沿进行折叠,使得平面平面,得到如图(2)所示的几何体.

(Ⅰ)求证:平面平面

(Ⅱ)已知点在线段上,且平面,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数据是郑州市普通职工个人的年收入,若这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是( )

A.年收入平均数大大增大,中位数一定变大,方差可能不变

B.年收入平均数大大增大,中位数可能不变,方差变大

C.年收入平均数大大增大,中位数可能不变,方差也不变

D.年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣ax2+bx+c(a,b,c∈R).

(1)若函数f(x)在x=﹣1和x=3处取得极值,试求a,b的值;

(2)在(1)的条件下,当x∈[﹣2,6]时,f(x)<2|c|恒成立,求c的取值范围.

查看答案和解析>>

同步练习册答案