精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+ln x,其中a为常数,e为自然对数的底数.
(1)当a=-1时,求f(x)的最大值;
(2)当a=-1时,试推断方程|f(x)|=是否有实数解,并说明理由.
(1) -1   (2) 没有,理由见解析
解:(1)当a=-1时,f(x)=-x+ln x,
f′(x)=-1+.
当0<x<1时,f′(x)>0;
当x>1时,f′(x)<0.
∴f(x)在区间(0,1)上是增函数,在区间(1,+∞)上是减函数.
f(x)max=f(1)=-1.
(2)由(1)知当a=-1时,
f(x)max=f(1)=-1,∴|f(x)|≥1.
令g(x)=,则g′(x)=
令g′(x)=0,得x=e,
当0<x<e时,g′(x)>0,g(x)在区间(0,e)上单调递增;
当x>e时,g′(x)<0,g(x)在区间(e,+∞)上单调递减.
∴g(x)max=g(e)=<1,
∴g(x)<1.∴|f(x)|>g(x)恒成立,
即|f(x)|>恒成立.
∴方程|f(x)|=没有实数解.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求曲线在点的切线方程;
(2)对一切,恒成立,求实数的取值范围;
(3)当时,试讨论内的极值点的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)若存在单调递减区间,求实数的取值范围;
(2)若,求证:当时,恒成立;
(3)设,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln ax (a≠0).
(1)求函数f(x)的单调区间及最值;
(2)求证:对于任意正整数n,均有1+(e为自然对数的底数);
(3)当a=1时,是否存在过点(1,-1)的直线与函数yf(x)的图象相切?若存在,有多少条?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求的极值;
(2)当时,讨论的单调性;
(3)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若函数处取得极值,求实数的值;
(2)若,求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数yf(x)的图象关于y轴对称,且当x∈(-∞,0)时,f(x)+xf′(x)<0成立,a=(20.2f(20.2),b=(logπ3)·f(logπ3),c=(log39)·f(log39),则abc的大小关系是(  )
A.bacB.cab
C.cbaD.acb

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)的导函数为f′(x),对任意x∈R都有f′(x)>f(x)成立,则(  )
A.3f(ln 2)>2f(ln 3)B.3f(ln 2)=2f(ln 3)
C.3f(ln 2)<2f(ln 3)D.3f(ln 2)与2f(ln 3)的大小不确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax3x2cxd(acd∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求acd的值;
(2)若h(x)=x2bx,解不等式f′(x)+h(x)<0.

查看答案和解析>>

同步练习册答案