【题目】如图,半圆O的直径为2,A为直径延长线上一点,OA=2,B为半圆上任意一点,以线段AB为腰作等腰直角△ABC(C、O两点在直线AB的两侧),当∠AOB变化时,OC≤m恒成立,则m的最小值为______.
【答案】2+1
【解析】
根据题意,以O为坐标原点,OA为x轴建立坐标系,设∠AOB=θ,分析A、B的坐标,可得向量的坐标,又由△ABC为等腰直角三角形,则AC⊥AB且|AC|=|AB|,分析可得向量的坐标,进而由向量坐标的加法可得向量的坐标,进而可得向量的模,分析其最大值,若OC≤m恒成立,分析可得答案.
解:根据题意,以O为坐标原点,OA为x轴建立坐标系,如图:
则A(2,0),设∠AOB=θ,(0≤θ≤π),则B的坐标为(cosθ,sinθ),
则=(cosθ-2,sinθ),
△ABC为等腰直角三角形,则AC⊥AB且|AC|=|AB|,
又由C、O两点在直线AB的两侧,则=(sinθ,2-cosθ),
则=(2+sinθ,2-cosθ),
则||2=(2+sinθ)2+(2-cosθ)2=9+4(sinθ-cosθ)=9+4sin(θ-),
所以当θ=时,||2取得最大值9+4,
则OC的最大值为2+1,
若OC≤m恒成立,则m≥2+1,即m的最小值为2+1;
故答案为:2+1.
科目:高中数学 来源: 题型:
【题目】某乡镇响应“绿水青山就是金山银山”的号召,因地制宜的将该镇打造成“生态水果特色小镇”.经调研发现:某珍稀水果树的单株产量(单位:千克)与施用肥料(单位:千克)满足如下关系:,肥料成本投入为元,其它成本投入(如培育管理、施肥等人工费)元.已知这种水果的市场售价大约为15元/千克,且销路畅通供不应求.记该水果树的单株利润为(单位:元).
(Ⅰ)求的函数关系式;
(Ⅱ)当施用肥料为多少千克时,该水果树的单株利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即樟卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四校柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱的高为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学将100名高一新生分成水平相同的甲、乙两个平行班,每班50人,某教师采用、两种不同的教学模式分别在甲、乙两个班进行教改实验,为了了解教学效果,期末考试后,该教师分别从两班中各随机抽取20名学生的成绩进行统计,作出茎叶图如图所示,记成绩不低于90分为“成绩优秀”.
(1)在乙班的20个个体中,从不低于86分的成绩中随机抽取2人,求抽出的两个人均“成绩优秀”的概率;
(2)由以上统计数据填写列联表;能否在犯错误的概率不超过0.10的前提下认为成绩优秀与教学模型有关.
甲班() | 乙班() | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
1.323 | 2.072 | 2.706 | 3.847 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A、B、C对应边分别为a、b、c.
(1)若a=14,b=40,cosB=,求cosC;
(2)若a=3,b=,B=2A,求c的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线-=1(a>0,b>0)的离心率为2,焦点到渐近线的距离等于,过右焦点F2的直线l交双曲线于A,B两点,F1为左焦点.
(1)求双曲线的方程;
(2)若△F1AB的面积等于6,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:曲线C上的点到直线l的距离的最小值称为曲线C到直线l的距离,已知曲线C1:y=x2+a到直线l:y=x的距离等于曲线C2:x2+(y+4)2=2到直线l:y=x的距离,则实数a=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.
(1)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+ , 求gn(x)的表达式;
(2)若f(x)≥ag(x)恒成立,求实数a的取值范围;
(3)设n∈N+ , 比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com