精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中点.
(1)求证:CE∥平面PAD;
(2)若二面角P﹣AC﹣E的余弦值为 ,求直线PA与平面EAC所成角的正弦值.

【答案】
(1)证明:取线段AB的中点F,连接EF,CF.则AF=CD,AF∥CD,

所以四边形ADCF是平行四边形,

则CF∥AD;

又EF∥AP且CF∩EF=F,

∴面CFE∥面PAD,

又EC面CEF,

∴EC∥平面PAD


(2)解:如图,以C为原点,取AB中点F, 分别为x轴、y轴、z轴正向,

建立空间直角坐标系,则C(0,0,0),A(1,1,0),B(1,﹣1,0).

设P(0,0,a)(a>0),则E( ,﹣ ),

=(1,1,0), =(0,0,a), = ,﹣ ),

=(1,﹣1,0),则 为面PAC的法向量.

=(x,y,z)为面EAC的法向量,则

取x=a,y=﹣a,z=﹣2,则 =(a,﹣a,﹣2),

依题意,|cos< >|= = ,则a=1.

于是 =(1,﹣1,﹣2), =(1,1,﹣2).

设直线PA与平面EAC所成角为θ,则sinθ=|cos< >|= =

即直线PA与平面EAC所成角的正弦值为


【解析】(1)取线段AB的中点F,连接EF,CF,证明四边形ADCF是平行四边形,进而证明面CFE∥面PAD,即可证明EC∥平面PAD;(2)根据题意,建立空间直角坐标系,用坐标表示点与向量,求出面PAC的法向量,面EAC的法向量,利用二面角P﹣A C﹣E的余弦值为 ,可求a的值,从而可求 ,利用向量的夹角公式即可求得直线PA与平面EAC所成角的正弦值.
【考点精析】利用直线与平面平行的判定和空间角的异面直线所成的角对题目进行判断即可得到答案,需要熟知平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在下列四组函数中,f(x)与g(x)表示同一函数的是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且离心率等于

(1)求椭圆的方程;

(2)若直线与椭圆交于两点,与圆交于两点.若,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有 >0.
(Ⅰ)证明f(x)在[﹣1,1]上是增函数;
(Ⅱ)解不等式f(x2﹣1)+f(3﹣3x)<0
(Ⅲ)若f(x)≤t2﹣2at+1对x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (x∈R)
(1)用定义证明f(x)是增函数;
(2)若g(x)=f(x)﹣a是奇函数,求g(x)在(﹣∞,a]上的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x2﹣(m﹣1)x+2m
(1)若函数f(x)>0在(0,+∞)上恒成立,求m的取值范围;
(2)若函数f(x)在(0,1)内有零点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间;

(2)当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数单调递增,其中

(1)求的值;

(2)若,当时,试比较的大小关系(其中的导函数),请写出详细的推理过程;

(3)当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,四边形为矩形, 为等腰三角形, ,平面平面,且 分别为的中点.

(1)证明: 平面

(2)证明:平面平面

(3)求四棱锥的体积.

查看答案和解析>>

同步练习册答案