精英家教网 > 高中数学 > 题目详情
已知椭圆,离心率为,F1,F2分别为其左右焦点,椭圆上点P到F1与F2距离之和为4,
(1)求椭圆C1方程.
(2)若一动圆过F2且与直线x=-1相切,求动圆圆心轨迹C方程.
(3)在(2)轨迹C上有两点M,N,椭圆C1上有两点P,Q,满足共线,共线,且=0,求四边形PMQN面积最小值.
【答案】分析:(1)由题设知,由此能求出椭圆C1方程.
(2)设动圆圆心C(x,y),由动圆过的右焦点F2(1,0),且与直线x=-1相切,知,由此能求出动圆圆心轨迹C方程.
(3)当直线斜率不存在时,|MN|=4,SPMQN=8;当直线斜率不存在时,设直线MN的方程为:y=k(x-1),直线PQ的方程为y=(x-1),设M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),由,得k2x2-(2k2+4)x+k2=0,由抛物线定义可知:|MN|=|MF2|+|NF2|=4+,由此能求出四边形PMQN面积的最小值.
解答:解:(1)∵椭圆,离心率为
F1,F2分别为其左右焦点,椭圆上点P到F1与F2距离之和为4,
,解得a=2,c=1,b2=a2-c2=3,
∴椭圆C1方程为
(2)设动圆圆心C(x,y),
∵动圆过的右焦点F2(1,0),且与直线x=-1相切,

整理,得动圆圆心轨迹C方程为y2=4x.
(3)当直线斜率不存在时,|MN|=4,
此时PQ的长即为椭圆长轴长,|PQ|=4,
从而SPMQN=|MN|•|PQ|=×4×4=8,
设直线MN的斜率为k,直线MN的方程为:y=k(x-1),
直线PQ的方程为y=(x-1),
设M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),
,消去y可得k2x2-(2k2+4)x+k2=0,
由抛物线定义可知:
|MN|=|MF2|+|NF2|=x1+1+x2+1
=+2=4+
,消去y得(3k2+4)x2-8x+4-12k2=0,
从而|PQ|=|x3-x4|=
∴SPMQN=|MN|•|PQ|=|MN|•|PQ|
=(4+)•
=24•
令1+k2=t,∵k>0,则t>1,
则SPMQN=
=
=
因为3--=4-(1+2∈(0,3),
所以SPMQN=>8,
所以四边形PMQN面积的最小值为8.
点评:本题考查椭圆方程和轨迹方程的求法,考查四边形面积的最小值的求法.综合性强,难度大,是高考的重点.解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为(  )
A、
1
2
B、
2
2
C、
3
3
D、以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在由圆O:x2+y2=1和椭圆C:
x2
a2
+y2
=1(a>1)构成的“眼形”结构中,已知椭圆的离心率为
6
3
,直线l与圆O相切于点M,与椭圆C相交于两点A,B.
(1)求椭圆C的方程;
(2)是否存在直线l,使得
OA
OB
=
1
2
OM
2
,若存在,求此时直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知椭圆的离心率为
2
2
,准线方程为x=±8,求这个椭圆的标准方程;
(2)假设你家订了一份报纸,送报人可能在早上6:30-7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00-8:00之间,请你求出父亲在离开家前能得到报纸(称为事件A)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右顶点,M是椭圆上异于A,B的任意一点,已知椭圆的离心率为e,右准线l的方程为x=m.
(1)若e=
1
2
,m=4,求椭圆C的方程;
(2)设直线AM交l于点P,以MP为直径的圆交MB于Q,若直线PQ恰过原点,求e.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆Ω的离心率为
1
2
,它的一个焦点和抛物线y2=-4x的焦点重合.
(1)求椭圆Ω的方程;
(2)若椭圆
x2    
a2
+
 y2   
b2
=1(a>b>0)
上过点(x0,y0)的切线方程为
 x0x   
a2
+
y0y    
b2
=1

①过直线l:x=4上点M引椭圆Ω的两条切线,切点分别为A,B,求证:直线AB恒过定点C;
②是否存在实数λ使得|AC|+|BC|=λ•|AC|•|BC|,若存在,求出A的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案