精英家教网 > 高中数学 > 题目详情

【题目】在一个口袋中装有5个黑球和3个白球,这些球除颜色外完全相同,从中摸出3个球,则摸出白球的个数多于黑球个数的概率为

A.B.

C.D.

【答案】C

【解析】

由在一个口袋中装有5个黑球和3个白球,这些球除颜色外完全相同知本题是一个古典概型,试验的总事件是从8个球中取3个球有种取法,从中摸出3个球,摸出白球的个数多于黑球个数,包括摸到2个白球,或摸到3个白球有种不同的取法,根据古典概型公式得到结果.

解:由题意知本题是一个古典概型,

在一个口袋中装有5个黑球和3个白球,这些球除颜色外完全相同.

试验的总事件是从8个球中取3个球有种取法,

摸出白球的个数多于黑球个数,包括摸到2个白球,或摸到3个白球有种不同的取法,

摸出白球的个数多于黑球个数的概率等于

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的公共点为.

求直线的斜率;

Ⅱ)若点分别为曲线上的动点,当取最大值时,求四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,离心率为,过点且斜率为的直线与椭圆交于点轴交于点.

(1)求椭圆的方程;

(2)设点的中点.

(i)若轴上存在点,对于任意的,都有为原点),求出点的坐标;

(ii)射线为原点)与椭圆交于点,满足,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:

若将月均课外阅读时间不低于30小时的学生称为“读书迷”.

(1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?

(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.

(i)共有多少种不同的抽取方法?

(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在其定义域上恰有两个零点,则正实数a的值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中是自然数的底数,.

1)当时,解不等式

2)若上是单调增函数,求的取值范围;

3)当时,求整数的所有值,使方程上有解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某电子科技公司由于产品采用最新技术,销售额不断增长,最近个季度的销售额数据统计如下表(其中表示年第一季度,以此类推):

季度

季度编号x

销售额y(百万元)

1)公司市场部从中任选个季度的数据进行对比分析,求这个季度的销售额都超过千万元的概率;

2)求关于的线性回归方程,并预测该公司的销售额.

附:线性回归方程:其中

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次抽奖活动中,有6人获得抽奖机会,抽奖规则如下:若获一等奖后不再参加抽奖,获得二等奖的仍参加三等奖抽奖.现在主办方先从6人中随机抽取2人均获一等奖,再从余下的4人中随机抽取1人获二等奖,最后还从这4人中随机抽取1人获三等奖.

1)求能获一等奖的概率;

2)若已获一等奖,求能获奖的概率.

查看答案和解析>>

同步练习册答案