精英家教网 > 高中数学 > 题目详情
已知数列{an}满足Sn+an=2n+1.
(1)写出a1,a2,a3,并推测an的表达式;
(2)用数学归纳法证明所得的结论.
分析:(1)取n=1,2,3,分别求出a1,a2,a3,然后仔细观察,总结规律,猜测an的值.
(2)用数学归纳法进行证明,①当n=1时,命题成立;②假设n=k时,命题成立,即ak=2-
1
2k
,当n=k+1时,a1+a2+…+ak+ak+1+ak+1=2(k+1)+1,ak+1=2-
1
2k+1
,当n=k+1时,命题成立.故an=2-
1
2n
都成立.
解答:解:(1)a1=
3
2
,a2=
7
4
,a3=
15
8

猜测an=2-
1
2n

(2)①由(1)已得当n=1时,命题成立;
②假设n=k时,命题成立,即ak=2-
1
2k

当n=k+1时,a1+a2+…+ak+2ak+1=2(k+1)+1,
且a1+a2+…+ak=2k+1-ak
∴2k+1-ak+2ak+1=2(k+1)+1=2k+3,
∴2ak+1=2+2-
1
2k
,即ak+1=2-
1
2k+1

即当n=k+1时,命题成立.
根据①②得n∈N+,an=2-
1
2n
都成立.
点评:本题考查数列的递推式,解题时注意数学归纳法的证明过程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案