【题目】已知数列满足条件:,且是公比为的等比数列,设.
(1)求出使不等式成立的的取值范围;
(2)求和,其中;
(3)设,求数列的最大项和最小项的值.
科目:高中数学 来源: 题型:
【题目】已知函数(,)的周期为,图像的一个对称中心为,将函数图像上的所有点的横坐标伸长为原来的2倍(纵坐标不变),在将所得图像向右平移个单位长度后得到函数的图像.
(1)求函数与的解析式;
(2)是否存在,使得,,按照某种顺序成等差数列?若存在,请确定的个数;若不存在,说明理由.
(3)求实数a与正整数n,使得在内恰有2013个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对有个元素的总体进行抽样,先将总体分成两个子总体和(m是给定的正整数,且),再从每个子总体中各随机抽取2个元素组成样本,用表示元素i和j同时出现在样本中的概率,则_________;所有的和等于________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2. 若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市随机选取位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.
甲 | 乙 | 丙 | 丁 | |
√ | × | √ | √ | |
× | √ | × | √ | |
√ | √ | √ | × | |
√ | × | √ | × | |
85 | √ | × | × | × |
× | √ | × | × |
(Ⅰ)估计顾客同时购买乙和丙的概率;
(Ⅱ)估计顾客在甲、乙、丙、丁中同时购买中商品的概率;
(Ⅲ)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】著名数学家华罗庚先生曾说过:“数缺形时少直观,形缺数时难入微数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,我们经常用函数的图象来研究函数的性质,也经常用函数的解析式来琢磨函数的图象的特征,如某体育品牌的LOGO为,可抽象为如图所示的轴对称的优美曲线,下列函数中,其图象大致可“完美”局部表达这条曲线的函数是( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大型科学竞技真人秀节目挑选选手的方式为:不但要对选手的空间感知、照相式记忆能力进行考核,而且要让选手经过名校最权威的脑力测试,120分以上才有机会入围.某重点高校准备调查脑力测试成绩是否与性别有关,在该高校随机抽取男、女学生各100名,然后对这200名学生进行脑力测试.规定:分数不小于120分为“入围学生”,分数小于120分为“未入围学生”.已知男生入围24人,女生未入围80人.
(1)根据题意,填写下面的2×2列联表,并根据列联表判断是否有95%以上的把握认为脑力测试后是否为“入围学生”与性别有关;
性别 | 入围人数 | 未入围人数 | 总计 |
男生 | |||
女生 | |||
总计 |
(2)用分层抽样的方法从“入围学生”中随机抽取11名学生,求这11名学生中男、女生人数;若抽取的女生的脑力测试分数各不相同(每个人的分数都是整数),分别求这11名学生中女生测试分数平均分的最小值.
附:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中e为自然对数的底数.
(1)若函数的图象在点处的切线方程为,求实数a的值;
(2)若函数有2个不同的零点,.
①求实数a的取值范围;
②求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com