精英家教网 > 高中数学 > 题目详情
3.△ABC为等腰直角三角形,OA=1,OC为斜边AB上的高,P为线段OC的中点,则$\overrightarrow{AP}•\overrightarrow{OP}$=$\frac{1}{4}$.

分析 可分别以CB,CA两直线为x轴,y轴,建立平面直角坐标系,根据条件容易求出CA=CB=$\sqrt{2}$,从而可确定图形上各点的坐标,从而得出向量$\overrightarrow{AP},\overrightarrow{OP}$的坐标,然后进行数量积的坐标运算即可.

解答 解:如图,分别以边CB,CA所在直线为x,y轴,建立如图所示平面直角坐标系;
根据条件知CA=CB=$\sqrt{2}$;
∴A(0,$\sqrt{2}$),B($\sqrt{2}$,0),O($\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}$),P($\frac{\sqrt{2}}{4},\frac{\sqrt{2}}{4}$);
∴$\overrightarrow{AP}=(\frac{\sqrt{2}}{4},-\frac{3\sqrt{2}}{4}),\overrightarrow{OP}=(-\frac{\sqrt{2}}{4},-\frac{\sqrt{2}}{4})$;
∴$\overrightarrow{AP}•\overrightarrow{OP}=-\frac{1}{8}+\frac{3}{8}=\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 考查建立平面直角坐标系,利用向量坐标解决向量问题的方法,建立完坐标系能够求出图形上点的坐标,从而求出向量的坐标,向量数量积的坐标运算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2$\sqrt{3}sin(ωx+\frac{π}{4})sin(\frac{π}{4}-ωx)+sin2ωx+a(ω>0)$的图象与直线y=m(m>0)相切,并且切点横坐标依次成公差为π的等差数列,且f(x)的最大值为1.
(1)x∈[0,π],求函数f(x)的单调递增区间;
(2)将f(x)的图象向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,若函数y=g(x)-m在$[0,\frac{π}{2}]$上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)的定义域为(0,+∞),且f(x)为增函数,f(xy)=f(x)+f(y).
(1)求证:f($\frac{{x}^{2}}{y}$)=2f(x)-f(y);
(2)若f(2)=1,且f(a)>f(a-1)+2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在数列{an}中,a1=6,an+1=2an+3×2n,则通项an=(3n+3)•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.Sn为数列{an}的前n项和,已知Sn=$\frac{1}{2}•{3^n}+\frac{3}{2}$.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足anbn=log3an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\frac{{{e^x}-{e^{-x}}}}{2}$是(  )
A.偶函数,在(0,+∞)是增函数B.奇函数,在(0,+∞)是增函数
C.偶函数,在(0,+∞)是减函数D.奇函数,在(0,+∞)是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若变量x,y满足$\left\{{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}}$,则$\frac{y+1}{x-2}$的最大值为$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合A={x|x2-4x-5<0},B={x|2<x<4},则A∩B=(  )
A.(1,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{{x}^{2}}{{x}^{2}+1}$.
(1)求f($\frac{1}{2}$)和f(2)和f($\frac{1}{3}$)+f(3)的值;
(2)通过(1)的计算你能归纳出一般结论吗?

查看答案和解析>>

同步练习册答案