精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=lnx﹣ax(a∈R).
(1)若直线y=3x﹣1是函数f(x)图象的一条切线,求实数a的值;
(2)若函数f(x)在[1,e2]上的最大值为1﹣ae(e为自然对数的底数),求实数a的值;
(3)若关于x的方程ln(2x2﹣x﹣3t)+x2﹣x﹣t=ln(x﹣t)有且仅有唯一的实数根,求实数t的取值范围.

【答案】
(1)解:由f(x)=lnx﹣ax,得f′(x)= =3,

∴x= ,则f( )=ln

∴ln = -1,得ln =0,即a=﹣2


(2)解:f′(x)=

当a≤ 时,f′(x)≥0在[1,e2]上恒成立,故f(x)在[1,e2]上为增函数,

故f(x)的最大值为f(e2)=2﹣ae2=1﹣ae,得 (舍);

<a<1时,若x∈[1, ],f′(x)>0,x∈[ ,2],f′(x)<0,

故f(x)在[1,e2]上先增后减,故

f(1)=﹣a,f(e2)=2﹣ae2

即当 时, ,得 (舍);

时,f(x)max=﹣a=1﹣ae,得a=

当a≥1时,故当x∈[1,e2]时,f′(x)≤0,f(x)是[1,e2]上的减函数,

故f(x)max=f(1)=﹣a=1﹣ae,得a= (舍);

综上,a=


(3)ln(2x2﹣x﹣3t)+x2﹣x﹣t=ln(x﹣t)ln(2x2﹣x﹣3t) (2x2﹣x﹣3t)=ln(x﹣t) (x﹣t),

令g(x)=lnx+ ,则g(x)在(0,+∞)上是增函数,

又g(2x2﹣x﹣3t)=g(x﹣t),

∴2x2﹣x﹣3t=x﹣t2(x2﹣x﹣t)=0,

作出图象如图:由图可知,实数t的取值范围是t=﹣ 或0<t<2.


【解析】(1)求出原函数的导函数,得到x= ,求出f( )=ln ,代入直线y=3x﹣1求得a值;(2)求出原函数的导函数,然后对a分类得到函数在[1,e2]上的单调性,并进一步求出函数在[1,e2]上的最大值,由最大值等于1﹣ae求得a值;(3)把ln(2x2﹣x﹣3t)+x2﹣x﹣t=ln(x﹣t)转化为ln(2x2﹣x﹣3t) (2x2﹣x﹣3t)=ln(x﹣t) (x﹣t),构造函数g(x)=lnx+ ,则g(x)在(0,+∞)上是增函数,得到 ,画出图形,数形结合得答案.
【考点精析】解答此题的关键在于理解函数的最大(小)值与导数的相关知识,掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某人在连续7天的定点投篮的分数统计如下:在上述统计数据的分析中,一部分计算如右图所示的算法流程图(其中 是这7个数据的平均数),则输出的S的值是(

观测次数i

1

2

3

4

5

6

7

观测数据ai

5

6

8

6

8

8

8


A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取100名学生,将他们期中考试的数学成绩(均为整数)分成六段:[40,50),[50,60),…,[90,100]后得到频率分布直方图(如图所示).则分数在[70,80)内的人数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,内角的对边分别为.若的面积为,且,则外接圆的面积为____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点在原点,过点A(-4,4)且焦点在x轴.

(1)求抛物线方程;

(2)直线l过定点B(-1,0)与该抛物线相交所得弦长为8,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(2,0),B(0,2),C(cosα,sinα).
(1)若 ,且α∈(0,π),求角α的值;
(2)若 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2lnx﹣ ﹣m,若关于x的方程f(f(x))=x恰有两个不相等的实数根,则m的取值范围是(
A.(2ln3﹣4,+∞)
B.(﹣∞,2ln3﹣4)
C.(﹣4,+∞)
D.(﹣∞,﹣4)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2.5cos(ωx+φ)(ω>0,|φ|< )的部分图象如图所示,M、N两点之间的距离为13,且f(3)=0,若将函数f(x)的图象向右平移t(t>0)个单位长度后所得函数的图象关于坐标原点对称,则t的最小值为(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度五省GDP情况图,则下列陈述中不正确的是(  )

A. 2017年第一季度总量和增速由高到低排位均居同一位的省只有1个

B. 与去年同期相比,2017年第一季度五个省的总量均实现了增长

C. 去年同期河南省的总量不超过4000亿元

D. 2017年第一季度增速由高到低排位第5的是浙江省

查看答案和解析>>

同步练习册答案