精英家教网 > 高中数学 > 题目详情
7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$与双曲线$\frac{{x}^{2}}{{m}^{2}}-\frac{{y}^{2}}{{n}^{2}}=1$有交点P,且有公共的焦点F1,F2,且∠F1PF2=2α.求证:tanα=$\frac{n}{b}$.

分析 利用余弦定理求出cos2α,再利用三角函数中正切的半角公式即可证得.

解答 证明:因为椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$与双曲线$\frac{{x}^{2}}{{m}^{2}}-\frac{{y}^{2}}{{n}^{2}}=1$(m>0,n>0)有公共的焦点F1、F2
所以有:a2-b2=m2+n2
不妨设两曲线的交点P位于双曲线的右支上,设|PF1|=p,|PF2|=q.
由双曲线和椭圆的定义可得 p+q=2a,p-q=2m,
解得 p2+q2=2(a2+m2),pq=a2-m2
在△PF1F2中,cos∠F1PF2=cos2α=$\frac{{p}^{2}+{q}^{2}-4{c}^{2}}{2pq}$=$\frac{{b}^{2}-{n}^{2}}{2({a}^{2}-{m}^{2})}$,
∴tanα=$\frac{1-cos2α}{sin2α}$=$\frac{1-\frac{{b}^{2}-{n}^{2}}{2({a}^{2}-{m}^{2})}}{\sqrt{1-[\frac{{b}^{2}-{n}^{2}}{2({a}^{2}-{m}^{2})}]^{2}}}$=$\frac{n}{b}$.

点评 本题主要考查圆锥曲线的综合问题.解决本题的关键在于根据椭圆和双曲线有相同的焦点F1、F2,及圆锥曲线的定义.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在平行四边形ABCD中,AB=4$\sqrt{7}$,BC=4,点P在CD上,AC交BP于点Q,若$\overrightarrow{CP}$=3$\overrightarrow{PD}$,$\overrightarrow{AP}•\overrightarrow{BP}$=-12.则$\overrightarrow{AB}•\overrightarrow{AQ}$=(  )
A.66B.68C.72D.76

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知非零向量$\overrightarrow{a},\overrightarrow{b}$不共线.若$\overrightarrow{AB}=\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{AC}=2\overrightarrow{a}+8\overrightarrow{b}$,$\overrightarrow{AD}=3\overrightarrow{a}-3\overrightarrow{b}$,求证:A,B,C,D四点共面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=bx+1为x的一次函数,b为不等于1的常数,且g(n)=$\left\{\begin{array}{l}{1(n=0)}\\{f[g(n-1)](n≥1)}\end{array}\right.$.
(1)若an=g(n)-g(n-1)(n∈N*),求证:{an}为等比数列;
(2)设Sn=a1+a2+a3+…+an,求Sn(用n,b表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)是R上的单调函数,且对任意实数x,都有f[f(x)+$\frac{2}{{2}^{x}+1}$]=$\frac{1}{3}$,则f(log23)=(  )
A.1B.$\frac{4}{5}$C.$\frac{1}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设曲线x2-y2=0与抛物线y2=-4x的准线围成的三角形区域(包含边界)为D,P(x,y)为D内的一个动点,则目标函数z=x-2y+5的最大值为(  )
A.4B.5C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知{an}是等差数列,{bn}是等比数列,其公比q≠1,若a1=b1,a11=b11,且{an}和{bn}各项都是正数,则a6与b6的大小关系是>.(填“>”或“=”或“<”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an},且an=$\frac{1}{{{n^2}+n}}$,则数列{an}前100项的和等于(  )
A.$\frac{100}{101}$B.$\frac{99}{100}$C.$\frac{101}{102}$D.$\frac{99}{101}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.点P(-1,0)在动直线mx+y+2-m=0(m∈R )上射影为M,则点M到直线x-y=5的距离的最大值是3$\sqrt{2}$.

查看答案和解析>>

同步练习册答案