精英家教网 > 高中数学 > 题目详情

12分)满足条件,求的最大值和最小值,并求出相应的

解析:根据条件作出可行域如图所示,-------4分

解方程组----------6分

解方程组---------8分

再作直线,把直线向上平移

至过点时,取得最小值2,

此时------------------10分

把直线向上平移至过点时,取得最大值18,此时--------12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)是定义在D上的函数,若对任何实数α∈(0,1)以及D中的任意两数x1,x2,恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),则称f(x)为定义在D上的C函数.
(Ⅰ)试判断函数f1(x)=x2f2(x)=
1x
(x<0)
中哪些是各自定义域上的C函数,并说明理由;
(Ⅱ)已知f(x)是R上的C函数,m是给定的正整数,设an=f(n),n=0,1,2,…,m,且a0=0,am=2m,记Sf=a1+a2+…+am.对于满足条件的任意函数f(x),试求Sf的最大值;
(Ⅲ)若(Ⅱ)中Sf的最大值记为h(m),且h(1)+h(2)+…+h(m)≤a对任意给定的正整数m恒成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

将所有平面向量组成的集合记作R2,f是从R2到R2的映射,记作
y
=f(
x
)
或(y1,y2)=f(x1,x2),其中x1,x2,y1,y2都是实数.定义映射f的模为:在|
x
|=1的条件下|
y
|的最大值,记做||f||.若存在非零向量
x
R2,及实数λ使得f(
x
)=λ
x
,则称λ为f的一个特征值.
(1)若f(x1,x2)=(
1
2
x1,x2),求||f||;
(2)如果f(x1,x2)=(x1+x2,x1-x2),计算f的特征值,并求相应的
x

(3)若f(x1,x2)=(a1x1+a2x2,b1x1+b2x2),要使f有唯一的特征值,实数a1,a2,b1,b2应满足什么条件?试找出一个映射f,满足以下两个条件:①有唯一的特征值λ,②||f||=|λ|,并验证f满足这两个条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在集合D上的函数,若对集合D中的任意两数x1,x2恒有f(
1
4
x1+
3
4
x2)<
1
4
f(x1)+
3
4
f(x2)
成立,则f(x)是定义在D上的β函数.
(1)试判断f(x)=x2是否是其定义域上的β函数?
(2)设f(x)是定义在R上的奇函数,求证:f(x)不是定义在R上的β函数.
(3)设f(x)是定义在集合D上的函数,若对任意实数α∈[0,1]以及集合D中的任意两数x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),则称f(x)是定义在D上的α-β函数.已知f(x)是定义在R上的α-β函数,m是给定的正整数,设an=f(n),n=1,2,3…m且a0=0,am=2m,记∫=a1+a2+a3+…+am,对任意满足条件的函数f(x),求∫的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

本小题满分12分,(Ⅰ)问5分,(Ⅱ)问7分)

已知以原点为中心的椭圆的一条准线方程为,离心率是椭圆上的动点.

(Ⅰ)若的坐标分别是,求的最大值;

(Ⅱ)如题(20)图,点的坐标为是圆上的点,是点轴上的射影,点满足条件:.求线段的中点的轨迹方程;

查看答案和解析>>

同步练习册答案