精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知曲线的参数方程为为参数),在极坐标系中,直线的方程为: ,直线的方程为

(Ⅰ)写出曲线的直角坐标方程,并指出它是何种曲线;

(Ⅱ)设与曲线交于两点, 与曲线交于两点,求四边形面积的取值范围.

【答案】(1) 以为圆心, 为半径的圆;(2).

【解析】试题分析:(Ⅰ)利用平方法可消去参数,从而可得曲线的直角坐标方程,进而得它是何种曲线;(Ⅱ)设 ,曲线的方程化成极坐标方程,将曲线的方程化成极坐标方程得: ,∴ ,从而可得结果.

试题解析:(Ⅰ)由为参数)消去参数得:

∴曲线是以为圆心, 为半径的圆.

(Ⅱ)设

三点共线,则①,

将曲线的方程化成极坐标方程得: ,∴,代入①得:

得:

又∵,∴

,∴

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017湖南娄底二模】如图,四棱锥的底面是平行四边形,侧面是边长为2的正三角形, , .

(Ⅰ)求证:平面平面

(Ⅱ)设是棱上的点,当平面时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为(

A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且.

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC ,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面四边形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AD⊥ED,AF∥DE,AB∥CD,CD=2AB=2AD=2ED=xAF.
(Ⅰ)若四点F、B、C、E共面,AB=a,求x的值;
(Ⅱ)求证:平面CBE⊥平面EDB;
(Ⅲ)当x=2时,求二面角F﹣EB﹣C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =( ,cos ), =(cos ,1),且f(x)=
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[﹣π,π]上的最大值和最小值及取得最值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面向量 )满足 =2,且 的夹角为120° , t∈R,则|(1﹣t) +t |的最小值是 . 已知 =0,向量 满足( )( )=0,| |=5,| |=3,则 的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4―4:坐标系与参数方程]

在直角坐标系xOy中,直线l1的参数方程为t为参数),直线l2的参数方程为.设l1l2的交点为P,当k变化时,P的轨迹为曲线C.

(1)写出C的普通方程;

(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3ρ(cosθ+sinθ) =0,Ml3C的交点,求M的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明:12﹣22+32﹣42+…+(﹣1)n1n2=(﹣1)n1

查看答案和解析>>

同步练习册答案