【题目】已知直线y=2x﹣m与抛物线C:y2=2px(p>0)交于点A,B.
(1)m=p且|AB|=5,求抛物线C的方程;
(2)若m=4p,求证:OA⊥OB(O为坐标原点).
【答案】(1)y2=4x;(2)见解析
【解析】
(1)根据韦达定理和弦长公式列方程可得;
(2)联立直线与抛物线,根据韦达定理以及斜率公式可证结论。
(1)直线y=2x﹣p与抛物线C:y2=2px(p>0)联立,可得4x2﹣6p+p2=0,设A(x1,y1),B(x2,y2),可得x1+x2p,x1x2,
|AB|5,
解得p=2,即抛物线的方程为y2=4x;
(2)证明:由y=2x﹣4p联立抛物线方程y2=2px,可得2x2﹣9px+8p2=0,
设A(x1,y1),B(x2,y2),可得x1+x2p,x1x2=4p2,
即有y1y2()=﹣2p4p2,即有x1x2+y1y2=0,
可得OA⊥OB.
科目:高中数学 来源: 题型:
【题目】某厂销售部以箱为单位销售某种零件,每箱的定价为元,低于箱按原价销售,不低于箱则有以下两种优惠方案:①以箱为基准,每多箱送箱;②通过双方议价,买方能以优惠成交的概率为,以优惠成交的概率为.
甲、乙两单位都要在该厂购买箱这种零件,两单位都选择方案②,且各自达成的成交价格相互独立,求甲单位优惠比例不低于乙单位优惠比例的概率;
某单位需要这种零件箱,以购买总价的数学期望为决策依据,试问该单位选择哪种优惠方案更划算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)射线的极坐标方程为,若射线与曲线的交点为,与直线的交点为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,MBC顶点的坐标为A(-1,2),B(1,4),C(3,2).
(1)求ΔABC外接圆E的方程;
(2)若直线经过点(0,4),且与圆E相交所得的弦长为,求直线的方程;
(3)在圆E上是否存在点P,满足,若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,分别为椭圆的左、右焦点,点在椭圆上,且轴,的周长为6.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过点的直线与椭圆交于,两点,设为坐标原点,是否存在常数,使得恒成立?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E的一个顶点为,焦点在x轴上,若椭圆的右焦点到直线的距离是3.
求椭圆E的方程;
设过点A的直线l与该椭圆交于另一点B,当弦AB的长度最大时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线经过点,两条渐近线的夹角为,直线交双曲线于、.
(1)求双曲线的方程;
(2)若过原点,为双曲线上异于、的一点,且直线、的斜率为、,证明:为定值;
(3)若过双曲线的右焦点,是否存在轴上的点,使得直线绕点无论怎样转动,都有成立?若存在,求出的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com