精英家教网 > 高中数学 > 题目详情
(Ⅰ)已知函数f(x)=x2+lnx-ax在(0,1)上是增函数,求a的取值范围.

(Ⅱ)在(Ⅰ)的结论下,设g(x)=e2x+|ex-a|,x∈[0,ln3].求函数g(x)的最小值.

解:f′(x)=,∵f(x)在(0,1)上增,

∴f′(x)≥0在(0,1)上恒成立,

∴2x2-ax+1≥0,∴a≤=+2x.

+2x≥2,∴a≤2.

(Ⅱ)∵x∈[0,ln3],

∴ex∈[1,3].

    当a≤1时,g(x)=e2x+ex-a.此时,g(x)在x∈[0,ln3]上增,∴g(x)min=2-a;

    当1<a≤22时,g(x)=

    当x∈[0,lna]时,g′(x)=2e2x-ex>0.

    此时g(x)最小值g(0)=a;

    当x∈[lna,ln3]时,g(x)单调递增,

g(x)最小值为g(lna)=(elna)2=a2;

∵a<a2,

    故g(x)min=a.

    综上:a≤1时,g(x)min=2-a;

1<a≤2时,g(x)min=a.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案