精英家教网 > 高中数学 > 题目详情

【题目】椭圆C: =1(a>b>0)的离心率为 ,过右焦点F2(c,0)垂直于x轴的直线与椭圆交于A,B两点且|AB|= ,又过左焦点F1(﹣c,0)任作直线l交椭圆于点M
(1)求椭圆C的方程
(2)椭圆C上两点A,B关于直线l对称,求△AOB面积的最大值.

【答案】
(1)解:由题意可知椭圆的通径丨AB丨= = ,①

椭圆的离心率e= = = ,则 = ,②

由①②解得:a2=3,b2=2,

∴椭圆的标准方程为:


(2)解:由(1)可知:左焦点F1(﹣1,0),

依题意直线l不垂直x轴,当直线l的斜率k≠0时,可设直线l的方程为:y=k(x+1)(k≠0)

则直线AB的方程为:y=﹣ +b.A(x1,y1),B(x2,y2),

联立 ,整理得,(2k2+3)x2﹣6kmx+3k2m2﹣6k2=0,

△=(6km)2﹣4×(2k2+3)(3k2m2﹣6k2)>0,则m2k2﹣2k2﹣3<0,

x1+x2= ,x1x2=

设AB的中点为C(xC,yC),则xC= = ,yC=

点C在直线l上,∴ =k( +1),则m=﹣2k﹣ ,…②

此时m2﹣2﹣ =4k2+ +4>0与①矛盾,故k≠0时不成立.

当直线l的斜率k=0时,A(x0,y0),B(x0,﹣y0)(x0>0,y0>0)

△AOB面积s= ×2y0×x0=x0y0

+ =1≥2 = x0y0,∴x0y0

∴△AOB面积的最大值为 ,当且仅当 + = 时取等号.

△AOB面积的最大值


【解析】(1)由椭圆的通径公式及离心率公式,即可求得a和b的值,即可求得椭圆方程;(2)当直线l的斜率k≠0时,可设直线l的方程为:y=k(x+1)(k≠0),即可求得直线AB的方程,联立直线与椭圆方程,由△>0得到k,m的关系式,再由对称性求得k,m的关系式,此时k不存在;当直线l的斜率k=0时,A(x0 , y0),B(x0 , ﹣y0)(x0>0,y0>0)△AOB面积s=x0y0 , 由均值不等式求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 (a0+a1x+a2x2+…+anxn)dx=x(x+1)n , 则a1+a2+…+an=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)讨论的单调性;

(2)若存在及唯一正整数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点D为三角形ABC边BC上一点, =3 ,En(n∈N*)为AC边上的一列点,满足 = an+1 ﹣(3an+2) ,其中实数列{an}中,an>0,a1=1,则{an}的通项公式为(
A.32n﹣1﹣1
B.2n﹣1
C.3n﹣2
D.23n﹣1﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1与圆C2相交于AB两点,

(1)求公共弦AB所在的直线方程;

(2)求圆心在直线上,且经过AB两点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把函数f(x)=cos2 x﹣ )的图象向左平移 个单位后得到的函数为g(x),则以下结论中正确的是(
A.g( )>g( )>0
B.g( ??
C.g( )>g( )>0
D.g( )=g( )>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)经过点(0, ),离心率e=
(Ⅰ)求椭圆C的方程及焦距.
(Ⅱ)椭圆C的左焦点为F1 , 右顶点为A,经过点A的直线l与椭圆C的另一交点为P.若点B是直线x=2上异于点A的一个动点,且直线BF1⊥l,问:直线BP是否经过定点?若是,求出该定点的坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)(x∈R)满足f(﹣x)=4﹣f(x),函数 ,若曲线y=f(x)与y=g(x)图象的交点分别为(x1 , y1),(x2 , y2),(x3 , y3),…,(xm , ym),则 (结果用含有m的式子表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示是某市2017年4月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某同志随机选择4月1日至4月12日中的某一天到达该市,并停留3天. 该同志到达当日空气质量重度污染的概率

查看答案和解析>>

同步练习册答案