精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的长轴长为 是其长轴顶点, 是椭圆上异于 的动点,且.

(1)求椭圆的标准方程;

(2)如图,若动点在直线上,直线 分别交椭圆 两点.请问:直线是否过定点?若是,求出定点坐标;若不是,请说明理由.

【答案】(1);(2)直线过定点.

【解析】试题分析: 由长轴长为,由,设代入计算得设直线的方程为,求出直线的方程,联立直线与椭圆方程求出 求出直线过定点

解析:(1)由题意知

,则

,则,则,则,由此可得椭圆的标准方程为.

(2)设,则直线的方程为;则直线的方程为联立得消去得: ,则,即代入直线的方程得,故.

联立得消去得: ,则,即代入直线的方程得,故.

,即,则轴交点为

,即时,下证直线过点

故直线过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017安徽蚌埠一模)已知椭圆C:=1(a>b>0)的离心率为,F1,F2是椭圆的两个焦点,P是椭圆上任意一点,且△PF1F2的周长是8+2.

(1)求椭圆C的方程;

(2)设圆T:(x-2)2+y2=,过椭圆的上顶点M作圆T的两条切线交椭圆于E,F两点,求直线EF的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和极值;

(2)若有两个零点,求实数的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若的极大值点,求的值;

2)若上只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知圆的圆心坐标为,半径为,以坐标原点为极点, 轴正半轴为极轴,建立极坐标系,直线的参数方程为: 为参数)

(1)求圆和直线的极坐标方程;

(2)点 的极坐标为,直线与圆相较于,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,不能证明APBC的条件是(  )

A. APPBAPPC

B. APPBBCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射击手在同一条件下进行射击训练,结果如下:

射击次数n

10

20

50

100

200

500

击中靶心次数m

8

19

44

92

178

455

击中靶心频率

1)求出表中击中靶心的各个频率值;

2)这个射击手射击一次,击中靶心的概率可估计为多少?

查看答案和解析>>

同步练习册答案