【题目】在直角坐标系xOy中,曲线C1:,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C2是圆心极坐标为(3,π),半径为1的圆.
(1)求曲线C1的参数方程和C2的直角坐标方程;
(2)设M,N分别为曲线C1,C2上的动点,求|MN|的取值范围.
【答案】(1)(φ为参数);(x+3)2+y2=1(2)[1,5]
【解析】
(1)由曲线,能求出的参数方程;求出曲线是圆心直角坐标为,半径为1的圆,由此能求出的直角坐标方程;(2)设,,则,由此能求出的取值范围.
(1)∵曲线C1:,
∴C1的参数方程为(φ为参数),
∵曲线C2是圆心极坐标为(3,π),半径为1的圆,
∴曲线C2是圆心直角坐标为(﹣3,0),半径为1的圆,
∴C2的直角坐标方程为(x+3)2+y2=1.
(2)设M(cosφ,2sinφ),C2(﹣3,0),
∴3cos2φ+6cosφ+13=﹣3(cosφ﹣1)2+16,
∵﹣1≤cosφ≤1,∴,2≤|MC2|≤4,
∴1≤|MN|≤5.
∴|MN|的取值范围是[1,5].
科目:高中数学 来源: 题型:
【题目】已知抛物线C1的顶点在坐标原点,准线为x=﹣3,圆C2:(x﹣3)2+y2=1,过圆心C2的直线l与抛物线C1交于点A,B,l与圆C2交于点M,N,且|AM|<|AN|,则|AM||BM|的最小值为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元前世纪的毕达哥拉斯是最早研究“完全数”的人.完全数是一种特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.若从集合中随机抽取两个数,则这两个数中有完全数的概率是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量,是坐标原点,若,且方向是沿的方向绕着点按逆时针方向旋转角得到的,则称经过一次变换得到,现有向量经过一次变换后得到,经过一次变换后得到,…,如此下去,经过一次变换后得到,设,,,则等于( )
A.B.
C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右焦点为,直线与轴交于点,假设(其中为坐标原点)
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】故宫博物院五一期间同时举办“戏曲文化展”、“明代御窖瓷器展”、“历代青绿山水画展”、 “赵孟頫书画展”四个展览.某同学决定在五一当天的上、下午各参观其中的一个,且至少参观一个画展,则不同的参观方案共有
A. 6种 B. 8种 C. 10种 D. 12种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为(t为参数),直线过点且倾斜角为,以坐标原点O为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系.
(1)写出曲线C的极坐标方程和直线的参数方程;
(2)若直线l与曲线C交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在以A,B,C,D,E,F为顶点的多面体中,四边形是菱形,
(1)求证:平面ABC⊥平面ACDF
(2)求平面AEF与平面ACE所成的锐二面角的余弦值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com