精英家教网 > 高中数学 > 题目详情

【题目】如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),抛物线的顶点为点D,对称轴与x轴交于点E,连结BD,则抛物线表达式:BD的长为

【答案】y=﹣x2+2x+3;2
【解析】解:由抛物线的性质可知:抛物线y=ax2+2x+c经过点A(0,3),即c=3, ∴抛物线y=ax2+2x+3经过点B(﹣1,0),代入求得a=﹣1,
∴抛物线的表达式y=﹣x2+2x+3,
由y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴抛物线的顶点为点D(1,4),
由两点之间的距离公式|BD|= =2
|BD|=2
所以答案是:y=﹣x2+2x+3,2
【考点精析】掌握二次函数的性质是解答本题的根本,需要知道当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相互统一的和谐美.定义:能够将圆的周长和面积同时等分成两部分的函数称为圆的一个“太极函数”.下列有关说法中:

①对圆的所有非常数函数的太极函数中,一定不能为偶函数;

②函数是圆的一个太极函数;

③存在圆,使得是圆的太极函数;

④直线所对应的函数一定是圆的太极函数.

所有正确说法的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了个面包,以(单位:个, )表示面包的需求量, (单位:元)表示利润.

(Ⅰ)求关于的函数解析式;

(Ⅱ)求食堂每天面包需求量的中位数;

(Ⅲ)根据直方图估计利润不少于元的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的方程x2+ax+a﹣2=0.
(1)当该方程的一个根为1时,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.
(3)设该方程的两个实数根分别为x1 , x2 , 若2(x1+x2)+x1x2+10=0,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了对生产的一种新产品进行合理定价,将该产品按事先拟定的价格进行试销,得到以下数据:

单价x(元/件)

60

62

64

66

68

70

销量y(件)

91

84

81

75

70

67

I)画出散点图,并求关于的回归方程;

II)已知该产品的成本是36/件,预计在今后的销售中,销量与单价仍然服从(I)中的关系,为使企业获得最大利润,该产品的单价应定为多少元(精确到元)?

附:回归直线的斜率和截距的最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若存在极值点1,求的值;

(2)若存在两个不同的零点,求证: 为自然对数的底数, ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界越来越关注环境保护问题,某监测站点2016年8月某日起连续天监测空气质量指数据统计如下

空气质量指

空气质量等级

空气优

空气良

轻度污染

中度污染

重度污染

天数

(1)根据所给统计表和频率分布直方图中的信息求出的值,并完成頻率分布直方图

(2)由頻率分布直方图求该组数据的平均数与中位数;

(3)在空气质量数分别为的监测数据中,用分层抽样的方法抽取天,从中任意选取天,求事件两天空气都为良发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】集合A={x|3≤x<9},B={x|1<x<7},C={x|x>m}.
(1)求A∪B;
(2)求(RA)∩B;
(3)若BC,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有5名男司机,4名女司机,需选派5人运货到吴忠.

(1)如果派3名男司机、2名女司机,共有多少种不同的选派方法?

(2)至少有两名男司机,共有多少种不同的选派方法?

查看答案和解析>>

同步练习册答案