【题目】如图,三棱柱中,侧面是边长为2的菱形,且, ,四棱锥的体积为2,点在平面内的正投影为,且在上,点在线段上,且.
(Ⅰ)证明:直线平面;
(Ⅱ)求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】(题文)如图,长方形材料中,已知,.点为材料内部一点,于,于,且,. 现要在长方形材料中裁剪出四边形材料,满足,点、分别在边,上.
(1)设,试将四边形材料的面积表示为的函数,并指明的取值范围;
(2)试确定点在上的位置,使得四边形材料的面积最小,并求出其最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】圆x2+y2-2y-1=0关于直线y=x对称的圆的方程是 ( )
A. (x-1)2+y2=2 B. (x+1)2+y2=2 C. (x-1)2+y2=4 D. (x+1)2+y2=4
【答案】A
【解析】圆 的标准方程为,所以圆心为(0,1),半径为,圆心关于直线的对称点是(1,0),所以圆x2+y2-2y-1=0关于直线y=x对称的圆的方程是,选A.
点睛:本题主要考查圆关于直线的对称的圆的方程,属于基础题。解答本题的关键是求出圆心关于直线的对称点,两圆半径相同。
【题型】单选题
【结束】
8
【题目】已知双曲线的离心率为,焦点是, ,则双曲线方程为 ( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马, 田忌的下等马劣于齐王的下等马.现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
①假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
②若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.
(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;
(Ⅱ)求证:A为线段BM的中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点,动圆经过点且和直线相切,记动圆的圆心的轨迹为曲线.
(1)求曲线的方程;
(2)设曲线上一点的横坐标为,过的直线交于一点,交轴于点,过点作的垂线交于另一点,若是的切线,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为坐标原点,椭圆: 的左焦点是,离心率为,且上任意一点到的最短距离为.
(1)求的方程;
(2)过点的直线(不过原点)与交于两点、, 为线段的中点.
(i)证明:直线与的斜率乘积为定值;
(ii)求面积的最大值及此时的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com