精英家教网 > 高中数学 > 题目详情
17.在等比数列{an}中,a1a4=32,a6=64.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求S1+2S2+…+nSn

分析 (1)通过设等比数列{an}的公比为q,联立a1a4=32、a6=64,计算即得结论;
(2)通过(1)知${S_n}=\frac{{2(1-{2^n})}}{1-2}=2({2^n}-1)$,利用错位相减法计算即得结论.

解答 解:(1)设等比数列{an}的公比为q,
依题意$\left\{\begin{array}{l}{a_1}•{a_1}{q^3}=32\\{a_1}{q^5}=64\end{array}\right.$,
解得:a1=2,q=2,
∴${a_n}={2^n}$;
(2)由(1)知${S_n}=\frac{{2(1-{2^n})}}{1-2}=2({2^n}-1)$,
∴${S_1}+2{S_2}+…+n{S_n}=2[{({2+2•{2^2}+3•{2^3}+…+n•{2^n}})-({1+2+3+…+n})}]$,
设${T_n}=2+2•{2^2}+3•{2^3}+…+n•{2^n}$,
则$2{T_n}={2^2}+2•{2^3}+3•{2^4}+…+n•{2^{n+1}}$,
两式相减得:$-{T_n}=2+{2^2}+{2^3}+…+{2^n}-n•{2^{n+1}}=\frac{{2(1-{2^n})}}{1-2}-n•{2^{n+1}}=-(n-1)•{2^{n+1}}-2$,
∴${T_n}=(n-1)•{2^{n+1}}+2$,
∴${S_n}=(n-1)•{2^{n+2}}+4-n(n+1)$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知f(x)=$\frac{1}{x}$,则f′(1)=(  )
A.0B.1C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(-2,1),$\overrightarrow{b}$=(1,2),若存在非零实数m,n使得$\overrightarrow{x}=\frac{1}{n}$$\overrightarrow{a}$+(n+1)$\overrightarrow{b}$,$\overrightarrow{y}=m\overrightarrow{a}$+(n+4)$\overrightarrow{b}$,且$\overrightarrow{x}⊥\overrightarrow{y}$,试求$\frac{m}{n}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则以下四个命题:
①$\left.\begin{array}{l}{α∥β}\\{α∥γ}\end{array}\right\}$⇒γ∥β②$\left.\begin{array}{l}{α⊥β}\\{m∥α}\end{array}\right\}$⇒m⊥β③$\left.\begin{array}{l}{m⊥α}\\{m∥β}\end{array}\right\}$⇒α⊥β④$\left.\begin{array}{l}{m∥n}\\{n⊆α}\end{array}\right\}$⇒m⊥α.
其中真命题为(  )
A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若角α的终边上有一点P(-1,m),且sinαcosα=$\frac{{\sqrt{3}}}{4}$,则m的值为(  )
A.$\sqrt{3}$B.$±\sqrt{3}$C.$-\sqrt{3}$或$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{lo{g}_{2}(x-1)}$的定义域为集合A,函数g(x)=($\frac{1}{2}$)x,(-1≤x≤0)的值域为集合B.
(1)求A∩B;
(2)若集合C={x|a≤x≤2a-1},且C∩B=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}中,a1=1,a2=3且an+2=3an+1-2an,n∈N,对数列{an}有下列命题:①数列{an}是等差数列;②数列{an+1-an}是等比数列;③当n≥2时,an都是质数;④$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$<2,n∈N,则其中正确的命题有(  )
A.①②③④B.①②C.③④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.计划展出10幅不同的画,其中1幅水彩画、4幅油画、5幅国画,排成一列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的排列方式的种数有(  )
A.A44A55B.A23A44A53C.C31A44A55D.A22A44A55

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.化简$2{cos^2}α-(tanα+\frac{1}{tanα})•\frac{1}{2}$sin2α=cos2α.

查看答案和解析>>

同步练习册答案