【题目】设椭圆C: + =1(a>b>0)的左、右焦点分别为F1、F2 , 上顶点为A,过A与AF2垂直的直线交x轴负半轴于Q点,且F1恰好是线段QF2的中点.
(1)若过A、Q、F2三点的圆恰好与直线3x﹣4y﹣7=0相切,求椭圆C的方程;
(2)在(1)的条件下,B是椭圆C的左顶点,过点R( ,0)作与x轴不重合的直线l交椭圆C于E、F两点,直线BE、BF分别交直线x= 于M、N两点,若直线MR、NR的斜率分别为k1 , k2 , 试问:k1k2是否为定值?若是,求出该定值;若不是,请说明理由.
【答案】
(1)
解:由题意可知A(0,b),F1是线段QF1的中点,
设F1(﹣c,0),F2(c,0),则Q(﹣3c,0),
∵∠QAF1=90°,
∴b2=3c2,
由题意Rt△QAF1外接圆圆心为斜边的QF1中点F1(﹣c,0),半径等于2c,
由A,Q,F2,三点恰好与直线3x﹣4y﹣7=0相切,
∴F1(﹣c,0)到直线的距离等于半径2c,
即 =2c,
解得:c=1,b2=3,a2=4,
∴椭圆的标准方程:
(2)
解:设E(x1,y1),F(x2,y2),
直线PQ的方程为x=my+ ,代入椭圆方程 ,
4(4+3m2)y2+36my﹣21=0,
y1+y2=﹣ ,y1y2=﹣ ,
由B,E,M,三点共线,可知: = ,即yM= ,
同理可得:yN= ,
∴k1k2= × = = ,
由4(x1+2)(x2+2)=(2my1+7)(2my2+7)=4m2y1y2+14m(y1+y2)+49,
∴k1k2= =﹣ ,
∴k1k2是否为定值﹣
【解析】(1)由题意可知b2=3c2 , 根据点到直线的距离公式,即可求得c的值,求得a和b的值,求得椭圆方程;(2)设直线PQ方程,代入椭圆方程,利用韦达定理及直线的斜率公式,求得M和N点的纵坐标,利用斜率公式求得k1 , k2 , 利用韦达定理即可求得k1k2 .
科目:高中数学 来源: 题型:
【题目】已知三角形ABC中,B(﹣1,0),C(1,0),且|AB|+|AC|=4.
(Ⅰ)求动点A的轨迹M的方程;
(Ⅱ)P为轨迹M上动点,△PBC的内切圆面积为S1 , 外接圆面积为S2 , 当P在M上运动时,求 的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数fn(x)=a1x+a2x2+a3x3+…+anxn , 且fn(﹣1)=(﹣1)nn,n∈N* , 设函数g(n)= ,若bn=g(2n+4),n∈N* , 则数列{bn}的前n(n≥2)项和Sn等于 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设抛物线的顶点在坐标原点,焦点F在y轴正半轴上,过点F的直线交抛物线于A,B两点,线段AB的长是8,AB的中点到x轴的距离是3.
(1)求抛物线的标准方程;
(2)设直线m在y轴上的截距为6,且与抛物线交于P,Q两点,连结QF并延长交抛物线的准线于点R,当直线PR恰与抛物线相切时,求直线m的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三角形ABC的三个顶点都在球心为O、半径为3的球面上,且三棱锥O﹣ABC的高为2,点D是线段BC的中点,过点D作球O的截面,则截面积的最小值为( )
A.
B.4π
C.
D.3π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,且a>b,a>c.△ABC的外接圆半径为1, ,若边BC上一点D满足BD=2DC,且∠BAD=90°,则△ABC的面积为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+2|﹣|x﹣2|+m(m∈R).
(Ⅰ)若m=1,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三个实根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如表所示:
积极参加班级工作 | 不太主动参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性一般 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(Ⅰ)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(Ⅱ)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.
参考公式与临界值表:K2= .
p(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函f(x)=sin(2x﹣ )﹣cos2x.
(Ⅰ)求函数f(x)的最小正周期、最大值及取得最大值时x的集合;
(Ⅱ)设△ABC内角A、B、C的对边分别为a、b、c,若 ,b=1, ,且a>b,求角B和角C.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com