【题目】现给出两个条件:①,②,从中选出一个条件补充在下面的问题中,并以此为依据求解问题:(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在中,分别为内角所对的边( ).
(1)求;
(2)若,求面积的最大值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为,圆的方程为,动圆与圆内切且与圆外切.
(1)求动圆圆心的轨迹的方程;
(2)已知与为平面内的两个定点,过点的直线与轨迹交于,两点,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的离心率是,过点做斜率为的直线,椭圆与直线交于两点,当直线垂直于轴时.
(Ⅰ)求椭圆的方程;
(Ⅱ)当变化时,在轴上是否存在点,使得是以为底的等腰三角形,若存在求出的取值范围,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果无穷数列{an}满足条件:①;② 存在实数M,使得an≤M,其中n∈N*,那么我们称数列{an}为Ω数列.
(1)设数列{bn}的通项为bn=20n-2n,且是Ω数列,求M的取值范围;
(2)设{cn}是各项为正数的等比数列,Sn是其前n项和,c3=,S3=,证明:数列{Sn}是Ω数列;
(3)设数列{dn}是各项均为正整数的Ω数列,求证:dn≤dn+1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,己知圆和双曲线,记与轴正半轴、轴负半轴的公共点分别为、,又记与在第一、第四象限的公共点分别为、.
(1)若,且恰为的左焦点,求的两条渐近线的方程;
(2)若,且,求实数的值;
(3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂加工一批零件,加工过程中会产生次品,根据经验可知,其次品率p与日产量x(万件)之间满足函数关系式,已知每生产1万件合格品可获利2万元,但生产1万件次品将亏损1万元(次品率=次品数/生产量)
(1)试写出加工这批零件的日盈利额y(万元)与日产量x(万件)的函数;
(2)当日产量为多少时,可获得最大利润?最大利润为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人数 | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人数 | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(1)现随机抽取1名顾客,试估计该顾客年龄在[30,50)且未使用自由购的概率;
(2)从被抽取的年龄在[50,70]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[50,60)的概率;
(3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过曲线C1: (a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,直线F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com