精英家教网 > 高中数学 > 题目详情

【题目】现给出两个条件:①,②,从中选出一个条件补充在下面的问题中,并以此为依据求解问题:(选出一种可行的条件解答,若两个都选,则按第一个解答计分)在中,分别为内角所对的边( ).

1)求

2)若,求面积的最大值.

【答案】1;(2.

【解析】

1)对于所选的条件,先根据正弦定理将边化成角,结合三角恒等变换,即可计算,再根据角的范围,即可求解;

2)根据余弦定理,可得:,利用基本不等式,导出,结合三角形面积公式,即可求解.

1)选①

由正弦定理可得:

,∴

,∴,∴,即

,∴

选②

由正弦定理可得:

,∴,∴

,∴

2)由余弦定理得:

,当且仅当“”时取“=”,

,即,∴

的面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为,圆的方程为,动圆与圆内切且与圆外切.

(1)求动圆圆心的轨迹的方程;

(2)已知为平面内的两个定点,过点的直线与轨迹交于,两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率是,过点做斜率为的直线,椭圆与直线交于两点,当直线垂直于轴时

(Ⅰ)求椭圆的方程;

(Ⅱ)当变化时,在轴上是否存在点,使得是以为底的等腰三角形,若存在求出的取值范围,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果无穷数列{an}满足条件:①;② 存在实数M,使得anM,其中nN*,那么我们称数列{an}Ω数列.

1)设数列{bn}的通项为bn20n2n,且是Ω数列,求M的取值范围;

2)设{cn}是各项为正数的等比数列,Sn是其前n项和,c3S3,证明:数列{Sn}Ω数列;

3)设数列{dn}是各项均为正整数的Ω数列,求证:dndn1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,己知圆和双曲线,记轴正半轴、轴负半轴的公共点分别为,又记在第一、第四象限的公共点分别为.

1)若,且恰为的左焦点,求的两条渐近线的方程;

2)若,且,求实数的值;

3)若恰为的左焦点,求证:在轴上不存在这样的点,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂加工一批零件,加工过程中会产生次品,根据经验可知,其次品率p与日产量x(万件)之间满足函数关系式,已知每生产1万件合格品可获利2万元,但生产1万件次品将亏损1万元(次品率=次品数/生产量)

1)试写出加工这批零件的日盈利额y(万元)与日产量x(万件)的函数;

2)当日产量为多少时,可获得最大利润?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是一种通过自助结算购物的形式.某大型超市为调查顾客自由购的使用情况,随机抽取了100人,调查结果整理如下:

20以下

[2030

[3040

[4050

[5060

[6070]

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

1)现随机抽取1名顾客,试估计该顾客年龄在[3050)且未使用自由购的概率;

2)从被抽取的年龄在[5070]使用的自由购顾客中,随机抽取2人进一步了解情况,求这2人年龄都在[5060)的概率;

3)为鼓励顾客使用自由购,该超市拟对使用自由购顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数是偶函数,若方程在区间(其中为自然对数的底)上有两个不相等的实数根,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过曲线C1 (a>0,b>0)的左焦点F1作曲线C2:x2+y2=a2的切线,设切点为M,直线F1M交曲线C3:y2=2px(p>0)于点N,其中曲线C1与C3有一个共同的焦点,若|MF1|=|MN|,则曲线C1的离心率为(  )

A.B.C.D.

查看答案和解析>>

同步练习册答案