精英家教网 > 高中数学 > 题目详情

已知两个命题r(x):sin x+cos x>m,s(x):x2+mx+1>0.如果对?x∈R,r(x)与s(x)有且仅有一个是真命题,求实数m的取值范围.

解:∵sinx+cosx=sin(x+)≥-
∴当r(x)是真命题时,m<-
又∵对?x∈R,s(x)为真命题,即x2+mx+1>0恒成立,有△=m2-4<0,∴-2<m<2.
∴当r(x)为真,s(x)为假时,m<-
同时m≤-2或m≥2,即m≤-2,
当r(x)为假,s(x)为真时,m≥-且-2<m<2,
即-≤m<2.
综上所述,m的取值范围是m≤-2或-≤m<2.
分析:若对?x∈R,r(x)与s(x)有且仅有一个是真命题,则使两个命题成立的实数m的范围,不可能同时满足,也不可能同时不满足,使两个命题成立的实数m的范围,然后构造关于m的不等式,即可得到答案.
点评:本题考查的知识点是命题的真假判断与应用,其中使两个命题成立的实数m的范围,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两个命题r(x):sin x+cos x>m,s(x):x2+mx+1>0.如果对?x∈R,r(x)与s(x)有且仅有一个是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个命题r(x):sinx+cosx>m,s(x):x2+mx+1>0.如果对?x∈R,r(x)与s(x)有且仅有一个是真命题.求实数m的取值范围
{m|m≤-2或-
2
≤m<2}
{m|m≤-2或-
2
≤m<2}

查看答案和解析>>

科目:高中数学 来源:2013-2014学年安徽省安庆市望江中学高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知两个命题r(x):sin x+cos x>m,s(x):x2+mx+1>0.如果对?x∈R,r(x)与s(x)有且仅有一个是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省赣州市上犹三中高二(上)期中数学试卷(理科)(解析版) 题型:解答题

已知两个命题r(x):sin x+cos x>m,s(x):x2+mx+1>0.如果对?x∈R,r(x)与s(x)有且仅有一个是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学(文科)一轮复习讲义:1.3 简单的逻辑联结词、全称量词与存在量词(解析版) 题型:解答题

已知两个命题r(x):sin x+cos x>m,s(x):x2+mx+1>0.如果对?x∈R,r(x)与s(x)有且仅有一个是真命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案