【题目】如图,一块黄铜板上插着三根宝石针,在其中一根针上从下到上穿好由大到小的若干金片.若按照下面的法则移动这些金片:每次只能移动一片金片;每次移动的金片必须套在某根针上;大片不能叠在小片上面.设移完n片金片总共需要的次数为an,可推得a1=1,an+1=2an+1.如图是求移动次数在1000次以上的最小片数的程序框图模型,则输出的结果是( )
A. 8B. 9C. 10D. 11
科目:高中数学 来源: 题型:
【题目】某公司租赁甲、乙两种设备生产、两类产品,甲种设备每天能生产类产品件和类产品件,乙种设备每天能生产类产品件和类产品件.已知设备甲每天的租赁费为元,设备乙每天的租赁费为元,现该公司至少要生产类产品件,类产品件,求所需租赁费最少为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列中,.从数列中选出项并按原顺序组成的新数列记为,并称为数列的项子列.例如数列、、、为的一个项子列.
(1)试写出数列的一个项子列,并使其为等差数列;
(2)如果为数列的一个项子列,且为等差数列,证明:的公差满足;
(3)如果为数列的一个项子列,且为等比数列,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆:(),左、右焦点分别是、且,以为圆心,3为半径的圆与以为圆心,1为半径的圆相交于椭圆上的点
(1)求椭圆的方程;
(2)设椭圆:,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点
①求的值;
②令,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直角坐标系xOy中,点A坐标为(2,0),点B坐标为(4,3),点C坐标为(1,3),且(t∈R).
(1) 若CM⊥AB,求t的值;
(2) 当0≤ t ≤1时,求直线CM的斜率k和倾斜角θ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“一带一路”沿线的20国青年评选出了中国“新四大发明”:高铁、支付宝、共享单车和网购.2019年春节期间,“支付宝大行动”用发红包的方法刺激支付宝的使用.某商家统计前5名顾客扫描红包所得金额分别为5.2元,2.9元,3.3元,5.9元,4.8元,商家从这5名顾客中随机抽取3人赠送饮水杯.
(1)求获得饮水杯的三人中至少有一人的红包超过5元的概率;
(2)统计一周内每天使用支付宝付款的人数x与商家每天的净利润y元,得到7组数据,如表所示,并作出了散点图.
(i)直接根据散点图判断,与出哪一个适合作为每天的净利润的回归方程类型.
(ii)根据(i)的判断,建立y关于x的回归方程;若商家当天的净利润至少是1400元,估计使用支付宝付款的人数至少是多少?(a,b,c,d的值取整数)
参考数据:
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,点与抛物线的焦点关于原点对称,过点且斜率为的直线与抛物线交于不同两点,线段的中点为,直线与抛物线交于两点.
(Ⅰ)判断是否存在实数使得四边形为平行四边形.若存在,求出的值;若不存在,说明理由;
(Ⅱ)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点、的坐标分别为和,动点P满足,设动点P的轨迹为,以动点P到点距离的最大值为长轴,以点、为左、右焦点的椭圆为,则曲线和曲线的交点到轴的距离为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com