精英家教网 > 高中数学 > 题目详情
17.某校同学设计了一个如图所示的“蝴蝶形图案”.其中AC,BD是过抛物线y=x2的两条相互垂直的弦(点A,B在第二象限),且AC,BD交于点$F({0,\frac{1}{4}})$,点E为y轴上的一点,记∠EFA=α,其中α为锐角:
(1)设线段AF的长为m,将m表示为关于α的函数;
(2)求“蝴蝶形图案”面积的最小值,并指出取最小值时α的大小.

分析 (1)由点A(-msinα,mcosα+$\frac{1}{4}$),代入抛物线的标准方程,即可将m表示为关于α的函数;
(2)由题意结合图形,把A、B、C、D四点的坐标分别用|AF|、|BF|、|CF|、|DF|和α表示,代入抛物线方程后最终求得|AF|、|BF|、|CF|、|DF|,对三角形面积化简整理,换元后利用配方法求面积的最小值.

解答 解:(1)点A(-msinα,mcosα+$\frac{1}{4}$),
∴mcosα+$\frac{1}{4}$=(-msinα)2,即m2sin2α-mcosα-$\frac{1}{4}$=0.
∵m>0,∴m=|AF|=$\frac{cosα+1}{2si{n}^{2}α}$;
(2)同理:|BF|=$\frac{1-sinα}{co{s}^{2}α}$,|DF|=$\frac{1-cosα}{2si{n}^{2}α}$,|CF|=$\frac{1+sinα}{2co{s}^{2}α}$.
“蝴蝶形图案”的面积S=S△AFB+S△CFD=$\frac{1-sinαcosα}{4(sinαcosα)^{2}}$,
令t=sinαcosα,t∈(0,$\frac{1}{2}$],
S=$\frac{1-t}{4{t}^{2}}$=$\frac{1}{4}$($\frac{1}{{t}^{2}}$-$\frac{1}{t}$),$\frac{1}{t}≥2$,∴$\frac{1}{t}$=2,Smin=$\frac{1}{2}$,此时$α=\frac{π}{4}$.

点评 本题考查了抛物线的标准方程及其性质、点直线与抛物线的关系、三角函数化简、换元法、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.点M(2,tan 300°)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.经过圆x2-2x+y2=0的圆心且与直线x+2y=0平行的直线方程是(  )
A.x+2y-1=0B.x-2y-2=0C.x-2y+1=0D.x+2y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\left\{\begin{array}{l}{y≤2}\\{y≥x}\\{y≤a(x-1)}\end{array}\right.$,且z=x+y的最大值是2,则a=(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.D,C,B三点依次在底面同一直线上,DC=a,点A在底面上的射影为B.从C,D两点测得点A的仰角分别为β和α(α<β),则A点离底面的高度AB等于(  )
A.$\frac{asinαsinβ}{sin(β-α)}$B.$\frac{asinαcosβ}{sin(β-α)}$C.$\frac{acosαsinβ}{sin(β-α)}$D.$\frac{asinαsinβ}{cos(β-α)}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.一次猜奖游戏中,1,2,3,4四扇门里摆放了a,b,c,d四件奖品(每扇门里仅放一件).甲同学说:1号门里是b,3号门里是c;乙同学说:2号门里是b,3号门里是d;丙同学说:4号门里是b,2号门里是c;丁同学说:4号门里是a,3号门里是c.如果他们每人都猜对了一半,那么4号门里是(  )
A.aB.bC.cD.d

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中,是真命题的是(  )
A.?x0∈R,ex0≤0
B.?x∈R,2x>x2
C.已知a,b为实数,则a+b=0的充要条件是$\frac{a}{b}$=-1
D.已知a,b为实数,则ab>1是a>1且b>1 的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$y=ln(2sinx-\sqrt{2})+\sqrt{1-2cosx}$的定义域是{x|$\frac{π}{3}$+2kπ≤x<$\frac{3π}{4}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是增函数,令$a=f(cos\frac{3π}{10})$,$b=f(-\frac{π}{5})$,$c=f(tan\frac{π}{5})$,则(  )
A.b<a<cB.c<b<aC.a<b<cD.b<c<a

查看答案和解析>>

同步练习册答案