3£®ÉèµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîΪSn£¬Èôa1=2£¬$\frac{{S}_{6}}{{S}_{2}}$=21£¬ÔòÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄÇ°5ÏîºÍΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$»ò$\frac{11}{32}$B£®$\frac{1}{2}$»ò$\frac{31}{32}$C£®$\frac{11}{32}$»ò$\frac{31}{32}$D£®$\frac{11}{32}$»ò$\frac{5}{2}$

·ÖÎö ÓɵȱÈÊýÁÐÇ°nÏîºÍ¹«Ê½µÃq4+q2-20=0£¬´Ó¶øq=¡À2£®ÓÉ´ËÄÜÇó³öÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄÇ°5ÏîºÍ£®

½â´ð ½â£º¡ßµÈ±ÈÊýÁÐ{an}µÄÇ°nÏîΪSn£¬a1=2£¬$\frac{{S}_{6}}{{S}_{2}}$=21£¬
¡à$\frac{{S}_{6}}{{S}_{2}}$=$\frac{{a}_{1}£¨1-{q}^{6}£©}{{a}_{1}£¨1-{q}^{2}£©}$=$\frac{1-{q}^{6}}{1-{q}^{2}}$=21£¬
¼´$\frac{£¨1-{q}^{3}£©£¨1+{q}^{3}£©}{£¨1-q£©£¨1+q£©}$=£¨1+q+q2£©£¨1-q+q2£©=£¨1+q2£©2-q2=21£¬
ÕûÀí£¬µÃq4+q2-20=0£¬
½âµÃq=¡À2£®
µ±q=2ʱ£¬${a}_{n}=2¡Á{2}^{n-1}={2}^{n}$£¬ÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄÇ°5ÏîºÍΪ${S}_{5}=\frac{\frac{1}{2}£¨1-\frac{1}{{2}^{5}}£©}{1-\frac{1}{2}}=\frac{31}{32}$
µ±q=-2ʱ£¬an=2¡Á£¨-2£©n-1£¬ÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄÇ°5ÏîºÍΪ${S}_{5}=\frac{\frac{1}{2}[1-£¨-\frac{1}{2}£©^{5}]}{1-£¨-\frac{1}{2}£©}$=$\frac{11}{32}$£®
¡àÊýÁÐ{$\frac{1}{{a}_{n}}$}µÄÇ°5ÏîºÍΪ$\frac{11}{32}$»ò$\frac{31}{32}$£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éµÈ±ÈÊýÁеÄÇ°5ÏîºÍµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱÈÏÕæÉóÌ⣬עÒâµÈ±ÈÊýÁеÄÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑ֪ȫ¼¯U={1£¬2£¬3£¬4£¬5£¬6£¬7}£¬¼¯ºÏA={1£¬2£¬3}£¬B={2£¬3£¬4}£¬ÔòA¡ÉB={2£¬3}£¬∁UA={4£¬5£¬6£¬7}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ö±Ïßl¹ýµãA£¨-1£¬-2£©£¬ÇÒ²»¾­¹ýµÚËÄÏóÏÞ£¬ÔòÖ±ÏßlµÄбÂʵÄÈ¡Öµ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨0£¬$\frac{1}{2}$]B£®[2£¬+¡Þ£©C£®£¨0£¬2]D£®£¨-¡Þ£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬ÆäÖÐÕýÊÓͼÊDZ߳¤Îª2µÄÕý·½ÐΣ¬¸©ÊÓͼÊÇÕýÈý½ÇÐΣ¬ÔòÕâ¸ö¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®$2\sqrt{3}$B£®$4\sqrt{3}$C£®$\frac{2}{3}\sqrt{3}$D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª±ß³¤Îª2µÄÕý·½ÐÎABCDÓëÁâÐÎABEFËùÔÚƽÃ滥Ïà´¹Ö±£¬MΪBCÖе㣮
£¨¢ñ£©ÇóÖ¤£ºEM¡ÎƽÃæADF£®
£¨¢ò£©Èô¡ÏABE=60¡ã£¬ÇóËÄÃæÌåM-ACEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÈçͼËùʾµÄ¶àÃæÌåÖУ¬ÃæABCDÊDZ߳¤Îª2µÄÕý·½ÐΣ¬Æ½ÃæPDCQ¡ÍƽÃæABCD£¬PD¡ÍDC£¬E£¬F£¬G·Ö±ðΪÀâBC£¬AD£¬PAµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºEG¡ÎƽÃæPDCQ£»
£¨¢ò£©ÒÑÖª¶þÃæ½ÇP-BF-CµÄÓàÏÒֵΪ$\frac{\sqrt{6}}{6}$£¬ÇóËÄÀâ׶P-ABCDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªº¯Êýf£¨x£©=1-$\frac{a}{{a}^{x}+b}$Ϊ¶¨ÒåÔÚRÉϵÄÆ溯Êý£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©ÅжÏf£¨x£©µÄµ¥µ÷ÐÔ£¬²¢Óö¨ÒåÖ¤Ã÷£»
£¨3£©Èôf£¨lnm£©+f£¨2lnn£©¡Ü1-3lnm£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ò»Á¾Æû³µÔÚij¶Î·³ÌÖеÄÐÐÊ»ËÙÂÊÓëʱ¼äµÄ¹ØϵÈçͼËùʾ£®
£¨1£©ÇóͼÖÐÒõÓ°²¿·ÖµÄÃæ»ý£¬²¢ËµÃ÷ËùÇóÃæ»ýµÄʵ¼Êº¬Ò壻
£¨2£©¼ÙÉèÕâÁ¾Æû³µÔÚÐÐÊ»¸Ã¶Î·³ÌÇ°Àï³Ì±íµÄ¶ÁÊýÊÇ8018km£¬ÊÔÇóÆû³µÔÚÐÐÊ»Õâ¶Î·³ÌʱÀï³Ì±í¶ÁÊýs£¨km£©Óëʱ¼ät £¨h£©µÄº¯Êý½âÎöʽ£¬²¢×÷³öÏàÓ¦µÄͼÏó£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖª¡÷ABCµÄÍâ½ÓÔ²µÄÔ²ÐÄΪO£¬AB=2£¬AC=3£¬BC=4£¬Ôò$\overrightarrow{AO}$•$\overrightarrow{BC}$=£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®$\frac{5}{2}$C£®2D£®7

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸