精英家教网 > 高中数学 > 题目详情
(2011•江苏模拟)设f(x)是定义在R上的奇函数,且当x<0时,f(x)=x2,若对任意的x∈[t-2,t],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是
(-∞,-
2
]
(-∞,-
2
]
分析:由当x<0时,f(x)=x2,函数是奇函数,可得当x≥0时,f(x)=-x2,从而f(x)在R上是单调递减函数,且满足2f(x)=f(
2
x),再根据不等式f(x+t)≥2f(x)=f(
2
x)在[t-2,t]恒成立,可得x+t≤
2
x在[t-2,t]恒成立,即可得出答案.
解答:解:当x<0时,f(x)=x2
∵函数是奇函数
∴当x≥0时,f(x)=-x2
∴f(x)=
-x2,x≥0
x2,x<0

∴f(x)在R上是单调递减函数,
且满足2f(x)=f(
2
x),
∵不等式f(x+t)≥2f(x)=f(
2
x)在[t-2,t]恒成立,
∴x+t≤
2
x在[t-2,t]恒成立,
即:x≥(1+
2
)t在 x∈[t-2,t]恒成立,
∴t-2≥(1+
2
)t
解得:t≤-
2

故答案为:(-∞,-
2
]
点评:本题考查了函数恒成立问题及函数的奇偶性,难度适中,关键是掌握函数的单调性与奇偶性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•江苏模拟)在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,面积S△ABC=6.
(Ⅰ)求△ABC的三边的长;
(Ⅱ)设P是△ABC(含边界)内一点,P到三边AC,BC,AB的距离分别为x,y和z,求x+y+z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江苏模拟)设函数f(x)=lg
m-1
i=1
ix+mxa
m2
,其中a∈R,m是给定的正整数,且m≥2,如果不等式f(x)<(x-2)lgm在区间[1,+∞)上恒成立,则实数a的取值范围是
a<
3-m
2
a<
3-m
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江苏模拟)设集合M={1,2,3,4,5,6,7,8},s1,s2,…,sk都是M的含两个元素的子集,且满足对任意的si={aibi},sj={ajbj}(i≠j,i,j∈{1,2,3,…,k,k∈N*}),都min{
ai
bi
bi
ai
}≠min{
aj
bj
bj
aj
}
(min{x,y}表示两个数x,y中的较小者),则k的最大值是
21
21

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•江苏模拟)已知m,n是不同的直线,α,β是不重合的平面.命题p:若α∥β,m?α,n?β则m∥n;命题q:若m⊥α,n⊥β,m∥n,则α∥β.下面的命题中,真命题的序号是
①④
①④

①“p或q”为真;②“p且q”为真;③p真q假;④“¬p”为真.

查看答案和解析>>

同步练习册答案