精英家教网 > 高中数学 > 题目详情
9.双曲线的虚轴长为4,离心率e=$\frac{{\sqrt{6}}}{2},{F_1},{F_2}$分别是它的左右焦点,若过F1的直线与双曲线的左支交与A、B两点,且|AB|是|AF1|,|AF2|的等差中项,则|BF1|等于(  )
A.$8\sqrt{2}$B.$4\sqrt{2}$C.$2\sqrt{2}$D.8

分析 由题意及双曲线的方程知双曲线的虚轴长为4,即2b=4,利用离心率的知求解出a的值,再利用|AF1|,|AF2|的等差中项,得到|AB|,即可求出|BF1|.

解答 解:由题意可知2b=4,e=$\frac{c}{a}$=$\frac{\sqrt{6}}{2}$,于是a=2$\sqrt{2}$,
∵|AB|是|AF1|,|AF2|的等差中项,
∴2|AB|=|AF1|+|AF2|,
∵2|AF1|+2|BF1|=|AF1|+|AF2|,
∴2|BF1|=|AF2|-|AF1|=2a=2$\sqrt{2}$,
∴|BF1|=2$\sqrt{2}$.
故选:C.

点评 此题重点考查了双曲线方程的虚轴的概念及离心率的概念,还考查了利用双曲线的第一定义求解出|AB|的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0
(1)求证:对m∈R,直线与圆C总有两个不同的交点A、B;
(2)若定点P(1,1)满足$\overrightarrow{PB}=2\overrightarrow{AP}$,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+ax+2;
(1)当a=-1时,求函数f(x)的单调区间.
(2)若函数f(x)在[-5,5]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.高为$\sqrt{2}$的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,SA⊥面ABCD,则底面ABCD的中心与顶点S之间的距离为(  )
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{2}+\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若3a+4b=ab,a>0且b>0,则a+b的最小值是(  )
A.$6+2\sqrt{3}$B.$7+2\sqrt{3}$C.$6+4\sqrt{3}$D.$7+4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.命题“三角形ABC中,若cosA<0,则三角形ABC为钝角三角形”的逆否命题是(  )
A.三角形ABC中,若三角形ABC为钝角三角形,则cosA<0
B.三角形ABC中,若三角形ABC为锐角三角形,则cosA≥0
C.三角形ABC中,若三角形ABC为锐角三角形,则cosA<O
D.三角形ABC中,若三角形ABC为锐角或直角三角形,则cosA≥O

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,既是偶函数又是(0,+∞)上单调递减的函数是(  )
A.$y=\frac{1}{x}$B.y=x3C.y=|x|D.$y={(\frac{{\sqrt{2}}}{2})^{|x|}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知△ABC中,$\overrightarrow{AB}=4\overrightarrow i+3\overrightarrow j$,$\overrightarrow{AC}=-3\overrightarrow i+4\overrightarrow j$,其中$\overrightarrow i、\overrightarrow j$是基本单位向量,则△ABC的面积为$\frac{25}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数;1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数所组成的数列{an}为“斐波那契数列”.那么$\frac{{a}_{1}^{2}+{a}_{2}^{2}+{a}_{3}^{2}+{a}_{4}^{2}+…+{a}_{100}^{2}}{{a}_{100}}$是斐波那契数列中的第101项.

查看答案和解析>>

同步练习册答案