【题目】已知函数.
(I)讨论函数的单调性,并证明当时, ;
(Ⅱ)证明:当时,函数有最小值,设最小值为,求函数的值域.
【答案】(1)见解析(2)
【解析】试题分析:(1)先求函数导数,确定导函数在定义区间上恒非负,故得函数单调区间;根据函数单调递增得,即得不等式,(2)利用(1)结论可得函数的导数在区间内单调递增,根据零点存在定理可得有一唯一零点且.从而可得在处取最小值,利用化简,得.最后再利用导数研究函数单调性,即得函数的值域.
试题解析:(1)由得
故在上单调递增,
当时,由上知,
即,即,得证.
(2)对求导,得, .
记, .
由(Ⅰ)知,函数区间内单调递增,
又, ,所以存在唯一正实数,使得.
于是,当时, , ,函数在区间内单调递减;
当时, , ,函数在区间内单调递增.
所以在内有最小值,
由题设即.
又因为.所以.
根据(Ⅰ)知, 在内单调递增, ,所以.
令,则,函数在区间内单调递增,
所以,
即函数的值域为.
科目:高中数学 来源: 题型:
【题目】某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克, 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是__________元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左顶点为,右焦点为,过点且斜率为1的直线交椭圆于另一点,交轴于点, .
(1)求椭圆的方程;
(2)过点作直线与椭圆交于两点,连接(为坐标原点)并延长交椭圆于点,求面积的最大值及取最大值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线的焦点
(1)求椭圆的方程;
(2)已知、是椭圆上的两点, , 是椭圆上位于直线两侧的动点.①若直线的斜率为,求四边形面积的最大值;
②当, 运动时,满足,试问直线的斜率是否为定值,请说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com