精英家教网 > 高中数学 > 题目详情
17.求经过点M(1,2),且与椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=1有相同离心率的椭圆的标准方程.

分析 设出椭圆方程,代入点的坐标,即可得出椭圆方程.

解答 解:由题意,当焦点在x轴上时,设所求椭圆的方程为椭圆$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=t(t>0),
∵椭圆过点M(1,2),∴t=$\frac{1}{12}+\frac{4}{6}$=$\frac{3}{4}$,∴椭圆标准方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{\frac{2}{9}}$=1,
当焦点在y轴上时,设方程为$\frac{{y}^{2}}{12}+\frac{{x}^{2}}{6}$=m(m>0),
∵椭圆过点M(1,2),∴m=$\frac{4}{12}+\frac{1}{6}$=$\frac{1}{2}$,∴椭圆标准方程为$\frac{{y}^{2}}{6}+\frac{{x}^{2}}{3}$=1
故所求椭圆标准方程为$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{\frac{2}{9}}$=1或$\frac{{y}^{2}}{6}+\frac{{x}^{2}}{3}$=1.

点评 本题考查椭圆的方程与性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某个实心零部件的形状是如图所示的几何体,其下部为底面是正方形,侧面是全等的等腰梯形的四棱台A1B1C1D1-ABCD.上部为直四棱柱ABCD-A2B2C2D2
(1)证明:直线BD⊥平面ACC2A2
(2)现需要对该零件表面进行防腐处理,已知AB=10,A1B1=20,AA2=30,AA1=13(单位:厘米)每平方厘米的加工处理费为0.20元,需加工处理费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“点P(tanα,cosα)在第二象限”是“角α的终边在第四象限”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设椭圆M:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1$(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且椭圆的长轴长为4.
(1)求椭圆M的方程;
(2)若直线y=$\sqrt{2}$x+m交椭圆M于A,B两点,P(1,$\sqrt{2}$)为椭圆M上一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,正方形ABCD边长为2,E、F分别为AD、CD的中点,沿EF将正方形ABCD剪成两片,将这样的图片对接在正六边形各边上,如图所示,再将所得图片沿虚线折起,围成一个几何体,则此几何体的体积(  )
A.3B.4C.3$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn=$\frac{4}{3}$an-$\frac{{2}^{n+1}}{3}$+$\frac{2}{3}$,求an及Tn=$\sum_{k=1}^{n}\frac{{2}^{k}}{{S}_{k}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.不等式$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$-$\sqrt{ab}$≥λ($\frac{a+b}{2}$-$\sqrt{ab}$)对任意非负实数a.b恒成立,则正数λ的取值范围为(  )
A.(0,1]B.(0,$\frac{\sqrt{6}}{2}$]C.(0,$\sqrt{2}$]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{cx-1}{x+1}$(c为常数),且f(1)=0.
(1)求c的值;
(2)证明函数f(x)在[0,2]上是单调递增函数;
(3)已知函数g(x)=f(ex),判断函数g(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知$\frac{co{s}^{2}α-si{n}^{2}α}{sinα-cosα}$=$\frac{\sqrt{2}}{4}$,则sinαsin($\frac{π}{2}$+α)等于-$\frac{7}{16}$.

查看答案和解析>>

同步练习册答案