精英家教网 > 高中数学 > 题目详情
13.若函数f(x)=x3-3ax+b(a>0)的极大值为6,极小值为2,则f(x)的单调递减区间为(  )
A.(-∞,-1)B.(-1,1)C.(1,+∞)D.(-∞,-1)和(1,+∞)

分析 根据函数f(x)=x3-3ax+b(a>0)的极大值为6,极小值为2,求导f′(x)=0,求得该函数的极值点x1,x2,并判断是极大值点x1,还是极小值点x2,代入f(x1)=6,f(x2)=2,解方程组可求得a,b的值,再由f′(x)<0即可得到.

解答 解::令f′(x)=3x2-3a=0,得x=±$\sqrt{a}$,
令f′(x)>0得x>$\sqrt{a}$或x<-$\sqrt{a}$;令f′(x)<0得-$\sqrt{a}$<x<$\sqrt{a}$.
即x=-$\sqrt{a}$取极大,x=$\sqrt{a}$取极小.
∵函数f(x)=x3-3ax+b(a>0)的极大值为6,极小值为2,
∴f($\sqrt{a}$)=2,f(-$\sqrt{a}$)=6,
即a$\sqrt{a}$-3a$\sqrt{a}$+b=2且-a$\sqrt{a}$+3a$\sqrt{a}$+b=6,
得a=1,b=4,
则f′(x)=3x2-3,由f′(x)<0得-1<x<1.
则减区间为(-1,1).
故选:B.

点评 本题考查函数在某点取得极值的条件,以及函数的单调区间,考查解方程的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,圆C的方程为(x-1)2+(y-2)2=1,以原点O为极点,以x轴正半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)若直线l的参数方程为=$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),求圆C上的点到直线l的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc,设f(x)=$|\begin{array}{l}{mx}&{m}\\{2x}&{x+1}\end{array}|$
(1)若不等式f(x)<1的解集为R,求m的取值范围.
(2)若任意的x∈[1,3],不等式f(x)<6-m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[0,1],则f'(n)+f(m)的最大值是(  )
A.-9B.-1C.1D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=alnx+x+1+$\frac{a+1}{x}$(a∈R).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)已知h(x)=$\frac{2{e}^{x-1}}{x}$+a,若x1,x2是f(x)的两个极值点,且?m∈(0,2],f(x1)+f(x2)>h(m),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ex-ax-1.
(Ⅰ)若函数f(x)的图象在x=0处的切线平行于x轴,求a和f(x)在[0,2]上的最小值;
(Ⅱ)若函数f(x)在R上单调递增,求a的取值范围;
(Ⅲ)当a>0时,设函数f(x)的最小值为g(a),求证g(a)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知在△ABC中,A=30°,B=45°,a=2$\sqrt{2}$,则b=(  )
A.4B.$4\sqrt{2}$C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=x3+ax2+bx的图象与直线 y=-3x+8相切于点P(2,2).
(1)求a,b的值;
(2)求函数 f (x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设x>0,y>0,且$\frac{1}{x}$+$\frac{2}{y+1}$=2,则2x+y的最小值为3.

查看答案和解析>>

同步练习册答案