精英家教网 > 高中数学 > 题目详情
(2013•盐城二模)椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F,直线x=m与椭圆相交于A,B两点,若△FAB的周长最大时,△FAB的面积为ab,则椭圆的离心率为
2
2
2
2
分析:先画出图象,结合图象以及椭圆的定义求出△FAB的周长的表达式,进而求出何时周长最大,即可求出椭圆的离心率.
解答:解:设椭圆的右焦点E.如图:
由椭圆的定义得:△FAB的周长为:AB+AF+BF=AB+(2a-AE)+(2a-BE)=4a+AB-AE-BE;
∵AE+BE≥AB;
∴AB-AE-BE≤0,当AB过点E时取等号;
∴△FAB的周长:AB+AF+BF=4a+AB-AE-BE≤4a;
∴△FAB的周长的最大值是4a;
此时,△FAB的面积为
1
2
×2c×
2b2
a
=ab,
∴a2=2bc,平方得,
a4=4(a2-c2)c2
即4e4-4e2+1=0
∴e=
2
2

故答案为:
2
2
点评:本题主要考查椭圆的简单性质.在解决涉及到圆锥曲线上的点与焦点之间的关系的问题中,圆锥曲线的定义往往是解题的突破口.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•盐城二模)设函数y=f(x)满足对任意的x∈R,f(x)≥0且f2(x+1)+f2(x)=9.已知当x∈[0,1]时,有f(x)=2-|4x-2|,则f(
2013
6
)
的值为
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城二模)若复数z满足(1-i)z=2(i为虚数单位),则|z|=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城二模)正三棱柱ABC-A1B1C1的所有棱长都为4,D为的CC1中点.
(1)求证:AB1⊥平面A1BD;
(2)求二面角A-A1D-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城二模)若集合A={1,m-2},且A∩B={2},则实数m的值为
4
4

查看答案和解析>>

同步练习册答案