精英家教网 > 高中数学 > 题目详情
12.数列{an}满足:a1=1,a2=3,a3=2,an+2=an+1-an,则 S2017=(  )
A.0B.1C.4D.6

分析 利用递推关系写出前9项,可得an+6=an,数列的周期为6,计算一个周期的和,即可得出所求值.

解答 解:∵a1=1,a2=3,a3=2,an+2=an+1-an
∴a4=2-3=-1,a5=-1-2=-3,a6=-2,a7=1,a8=3,a9=2.….
∴an+6=an
则前2017项和S2017=(a1+a2+…+a6)×336+a1=0+a1=1.
故选:B.

点评 本题考查了数列的递推关系、数列的周期性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=-2x+1(x∈[0,5])的最小、最大值分别为(  )
A.3,5B.-9,1C.1,9D.1,-9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设α,β,γ为三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n?γ且(1)或(3),则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.
(1)α∥γ,n?β; (2)m∥γ,n∥β;(3)n∥β,m?γ.可以填入的条件有(1)或(3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设a,b,m,n∈R,且a2+b2=3,ma+nb=3,则 $\sqrt{{m}^{2}+{n}^{2}}$的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\frac{sinα-2cosα}{2sinα+3cosα}=2$,那么tanα的值为(  )
A.-2B.$-\frac{8}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=\frac{1}{2}a{x^2}+lnx+bx$,其中a,b∈R.
(1)当b=1时,g(x)=f(x)-x在$x=\frac{{\sqrt{2}}}{2}$处取得极值,求函数f(x)的单调区间;
(2)若a=0时,函数f(x)有两个不同的零点x1,x2
①求b的取值范围;
②求证:$\frac{{{x_1}{x_2}}}{e^2}>1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=ex+ln(x+1)的图象在(0,f(0))处的切线与直线x-ny+4=0垂直,则n的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,A、B、C所对的边分别是a、b、c,已知a2+b2=c2+$\sqrt{3}$ab,则C=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{6}$或$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知0<c<1,a>b>1,下列不等式成立的是(  )
A.ca>cbB.$\frac{a}{a-c}>\frac{b}{b-c}$C.bac>abcD.logac>logbc

查看答案和解析>>

同步练习册答案