精英家教网 > 高中数学 > 题目详情

若{an}满足a1=1,an+an+1=数学公式(n∈N*),设Sn=a1+4a2+42a3+…+4n-1an数学公式=________;类比课本中推导等比数列前n项和公式的方法,可求得5Sn-4nan=________.

2    n
分析:先对Sn=a1+a2•4+a3•42+…+an•4n-1 两边同乘以4,再相加,求出其和的表达式,整理即可求出5Sn-4nan的表达式.
解答:由Sn=a1+a2•4+a3•42+…+an•4n-1
得4•sn=4•a1+a2•42+a3•43+…+an-1•4n-1+an•4n
①+②得:5sn=a1+4(a1+a2)+42•(a2+a3)+…+4n-1•(an-1+an)+an•4n
=a1+4×+42•( 2+…+4 n-1•( n-1+4n•an
=1+1+1+…+1+4n•an
=n+4n•an
所以5sn-4n•an=n.
=2;
故答案为2; n
点评:本题主要考查数列的求和,用到了类比法,是一道比较新颖的好题目,关键点在于对课本中推导等比数列前n项和公式的方法的理解和掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、若{an}满足a1=0,an+1=an+2n则a2006=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•浙江模拟)数列{an}满足an+1+an=4n-3(n∈N*
(Ⅰ)若{an}是等差数列,求其通项公式;
(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

对于数列{an},若存在确定的自然数T>0,使得对任意的自然数n∈N*,都有:an+T=an成立,则称数列{an}是以T为周期的周期数列.
(1)记Sn=a1+a2+a3+…+an,若{an}满足an+2=an+1-an,且S2=1007,S3=2010,求证:数列{an}是以6为周期的周期数列,并求S2009
(2)若{an}满足a1=p∈[0, 
1
2
)
,且an+1=-2an2+2an,试判断{an}是否为周期数列,且说明理由;
(3)由(1)得数列{an},又设数列{bn},其中bn=an+2n+
2009
2n
,问是否存在最小的自然数n(n∈N*),使得对一切自然数m≥n,都有bm>2009?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•湘潭三模)若{an}满足a1=1,an+an+1=(
14
)n
(n∈N*),设Sn=a1+4a2+42a3+…+4n-1an5S2-42a2=
2
2
;类比课本中推导等比数列前n项和公式的方法,可求得5Sn-4nan=
n
n

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于数列{an},若存在确定的自然数T>0,使得对任意的自然数n∈N*,都有:an+T=an成立,则称数列{an}是以T为周期的周期数列.
(1)记Sn=a1+a2+a3+…+an,若{an}满足an+2=an+1-an,且S2=1007,S3=2010,求证:数列{an}是以6为周期的周期数列,并求S2009
(2)若{an}满足a1=p∈[0, 
1
2
)
,且an+1=-2an2+2an,试判断{an}是否为周期数列,且说明理由;
(3)由(1)得数列{an},又设数列{bn},其中bn=an+2n+
2009
2n
,问是否存在最小的自然数n(n∈N*),使得对一切自然数m≥n,都有bm>2009?请说明理由.

查看答案和解析>>

同步练习册答案