【题目】已知数列满足, .
(1)求证:数列为等差数列;
(2)求数列的前项和.
【答案】(1)证明见解析;(2).
【解析】试题分析:(1)根据数列的递推关系,利用构造法,由可得,结合等差数列的定义即可证明是等差数列;(2)根据(1)求出数列的通项公式,利用错位相减法,结合等比数列求和公式进行求解即可.
试题解析:(1)证明:因为(常数),
,所以数列是以1为首项,公差为1的等差数列.
(2)解:由(1)可知, ,所以,
所以, ①
, ②
①-②得,
所以 ,
所以 .
【易错点晴】本题主要考查数列的递推关系、等差数列的定义及等比数列的求和公式,“错位相减法”求数列的和,属于中档题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项 的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.
科目:高中数学 来源: 题型:
【题目】设{an}为单调递增数列,首项a1=4,且满足an+12+an2+16=8(an+1+an)+2an+1an , n∈N* , 则a1﹣a2+a3﹣a4+…+a2n﹣1﹣a2n=( )
A.﹣2n(2n﹣1)
B.﹣3n(n+3)
C.﹣4n(2n+1)
D.﹣6n(n+1)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方形ABCD和矩形ACEF所在的平面互相垂直, ,AF=1,M是线段EF的中点.
(1)求证:AM∥平面BDE;
(2)求证:AM⊥平面BDF.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某工厂每天固定成本是4万元,每生产一件产品成本增加100元,工厂每件产品的出厂价定为元时,生产件产品的销售收入是(元),为每天生产件产品的平均利润(平均利润=总利润/总产量).销售商从工厂每件元进货后又以每件元销售, ,其中为最高限价, 为销售乐观系数,据市场调查, 是由当是, 的比例中项时来确定.
(1)每天生产量为多少时,平均利润取得最大值?并求的最大值;
(2)求乐观系数的值;
(3)若,当厂家平均利润最大时,求与的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.
(1)求数列{an}的通项公式;
(2)设Sn为数列{an}的前n项和,bn= ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知多面体的底面是边长为2的正方形, 底面, ,且.
(Ⅰ)记线段的中点为,在平面内过点作一条直线与平面平行,要求保留作图痕迹,但不要求证明.
(Ⅱ)求直线与平面所成角的正弦值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)=2cos2x﹣2acosx﹣1﹣2a的最小值为g(a),a∈R
(1)求g(a);
(2)若g(a)= ,求a及此时f(x)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】两个非零向量 、 不共线.
(1)若 = + , =2 +8 , =3( ﹣ ),求证:A、B、D三点共线;
(2)求实数k使k + 与2 +k 共线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com