精英家教网 > 高中数学 > 题目详情
已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程.
由椭圆. 
设双曲线方程为,则 故所求双曲线方程为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在椭圆上,求点到直线的最大距离和最小距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,一个焦点为
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线交椭圆两点,若点都在以点为圆心的圆上,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知焦点在轴上椭圆的长轴的端点分别为为椭圆的中心,为右焦点,且,离心率
(Ⅰ)求椭圆的标准方程;
(Ⅱ)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰好为的垂心?若存在,求出直线的方程,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图椭圆的右顶点是,上下两个顶点分别为,四边形是矩形(为原点),点分别为线段的中点.
(Ⅰ)证明:直线与直线的交点在椭圆上;
(Ⅱ)若过点的直线交椭圆于两点,关于轴的对称点(不共线),问:直线是否经过轴上一定点,如果是,求这个定点的坐标,如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆与双曲线有相同的焦点,点的一个公共点,是一个以为底的等腰三角形,,的离心率为,则的离心率为  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆两个焦点的坐标分别为,并且经过点.过左焦点,斜率为的直线与椭圆交于两点.设,延长分别与椭圆交于两点.
(I)求椭圆的标准方程;  (II)若点,求点的坐标;
(III)设直线的斜率为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

. (本小题满分12分)
如图,设抛物线C1:的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率的椭圆C2与抛物线C1在X轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线上一动点,且M在P与Q之间运动.
(I)当m =1时,求椭圆C2的方程;
(II)当的边长恰好是三个连续的自然数时,求面积的最大值.

查看答案和解析>>

同步练习册答案