精英家教网 > 高中数学 > 题目详情
在△ABC中,sinA:sinB:sinC=3:2:4,则cosC的值为
-
1
4
-
1
4
分析:由正弦定理化简已知的比例式,得到a,b及c的比值,根据比例设出a,b及c,再利用余弦定理表示出cosC,将表示出的三边长代入,即可求出cosC的值.
解答:解:∵在△ABC中,sinA:sinB:sinC=3:2:4,
∴根据正弦定理得:a:b:c=3:2:4,
设a=3k,b=2k,c=4k,
则由余弦定理得cosC=
a2+b2-c2
2ab
=
9k2+4k2-16k2
12k2
=-
1
4

故答案为:-
1
4
点评:此题考查了正弦、余弦定理,以及比例的性质,熟练掌握正弦、余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、在△ABC中,sin(A+B)=sin(A-B),则△ABC一定是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,①sin(A+B)+sinC;②cos(B+C)+cosA;③tan
A+B
2
tan
C
2
;④cos
B+C
2
sin
A
2
,其中恒为定值的是(  )
A、②③B、①②C、②④D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sin(A-B)+sinC=
3
2
,BC=
3
AC
,则∠B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•广东模拟)在△ABC中,sin(C-A)=1,sinB=
1
3

(Ⅰ)求sinA的值;
(Ⅱ)设AC=
6
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,“sin(A-B)cosB+cos(A-B)sinB≥1”是“△ABC是直角三角形”的(  )
A、充分不必要条件B、必要不充分条件C、充分必要条件D、既不充分也不必要条件

查看答案和解析>>

同步练习册答案