精英家教网 > 高中数学 > 题目详情

【题目】已知某款冰淇淋的包装盒为圆台,盒盖为直径为的圆形纸片,每盒冰淇淋中包含有香草口味、巧克力口味和草莓口味冰淇淋球各一个,假定每个冰淇淋球都是半径为的球体,三个冰淇淋球两两相切,且都与冰淇淋盒盖、盒底和盒子侧面的曲面相切,则冰淇淋盒的体积为______

【答案】

【解析】

由题得三个球是平放在一起,三个球的球心组成一个边长为的等边三角形,其中心为,先求出,再作出圆台的轴截面图形,通过解三角形求出圆台下底的半径,即得圆台的体积,即得冰淇淋盒的体积.

由题得三个球是平放在一起,三个球的球心组成一个边长为的等边三角形,其中心为,

所以

由题得圆台的高为,其轴截面如图所示,

由题得OA=4,AF=4-2=2,BE=,BM=,

在直角中,

所以

所以下底的半径为

所以圆台的体积为

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平行四边形中,,过点作的垂线,交的延长线于点.连结,交于点,如图1,将沿折起,使得点到达点的位置,如图2.

(1)证明:平面平面

(2)若的中点,的中点,且平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某地区某种昆虫产卵数和温度有关.现收集了一只该品种昆虫的产卵数(个)和温度)的7组观测数据,其散点图如所示:

根据散点图,结合函数知识,可以发现产卵数和温度可用方程来拟合,令,结合样本数据可知与温度可用线性回归方程来拟合.根据收集到的数据,计算得到如下值:

27

74

182

表中

1)求和温度的回归方程(回归系数结果精确到);

2)求产卵数关于温度的回归方程;若该地区一段时间内的气温在之间(包括),估计该品种一只昆虫的产卵数的范围.(参考数据:.)

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201910月,德国爆发出芳香烃门事件,即一家权威的检测机构在德国销售的奶粉中随机抽检了16(德国4款,法国8款,荷兰4),其中8款检测出芳香烃矿物油成分,此成分会严重危害婴幼儿的成长,有些奶粉已经远销至中国.A地区闻讯后,立即组织相关检测员对这8款品牌的奶粉进行抽检,已知该地区有6家婴幼儿用品商店在售这几种品牌的奶粉,甲、乙、丙3名检测员分别负责进行检测,每人至少抽检1家商店,且检测过的商店不重复检测,则甲检测员检测2家商店的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】法国数学家布丰提出一种计算圆周率的方法——随机投针法,受其启发,我们设计如下实验来估计的值:先请200名同学每人随机写下一个横、纵坐标都小于1的正实数对;再统计两数的平方和小于1的数对的个数;最后再根据统计数来估计的值.已知某同学一次试验统计出,则其试验估计______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的离心率是,左右焦点分别为,过点的动直线与椭圆相交于两点,当直线时,的周长为.

1)求椭圆的方程;

2)当时,求直线方程;

3)已知点,直线的斜率分别为.问是否存在实数,使得恒成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点为,过(M不过椭圆的顶点和中心)且斜率为k直线l交椭圆于两点,与y轴交于点N,且.

(1)若直线l过点,求的周长;

(2)若直线l过点,求线段的中点R的轨迹方程;

(3)求证:为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线lax+ y1=0xy轴的交点分别为AB,直线l与圆Ox2+y2=1的交点为CD,给出下面三个结论:①a≥1SAOB=;②a≥1|AB||CD|;③a≥1SCOD.其中,所有正确结论的序号是(  )

A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,记集合.

1)对于数列,写出集合

2)若,是否存在,使得?若存在,求出一组符合条件的;若不存在,说明理由.

3)若,把集合中的元素从小到大排列,得到的新数列为,若,求的最大值.

查看答案和解析>>

同步练习册答案