精英家教网 > 高中数学 > 题目详情
7.如果对于任意实数x,[x]表示不超过x的最大整数,例如[3.27]=3,[0.6]=0,那么,[log2$\frac{1}{3}$]+[1og21]+[log22]的值为-1.

分析 由$lo{g}_{2}\frac{1}{3}$=-log23∈(-2,-1),可得$[lo{g}_{2}\frac{1}{3}]$=-2,同理可得:[log21]=0,[log22]=1,代入即可得出.

解答 解:∵$lo{g}_{2}\frac{1}{3}$=-log23∈(-2,-1),∴$[lo{g}_{2}\frac{1}{3}]$=-2,
同理可得:[log21]=0,[log22]=1,
∴,[log2$\frac{1}{3}$]+[1og21]+[log22]=-1.
故答案为:-1.

点评 本题考查了对数函数的单调性、取整函数的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\sqrt{1-x}$+$\sqrt{x-1}$的值域为{0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知两曲线的参数方程分别是$\left\{\begin{array}{l}{x=\sqrt{5}cosθ}\\{y=sinθ}\end{array}\right.$(0≤θ≤π)和$\left\{\begin{array}{l}{x=\frac{5}{4}t}\\{y=t}\end{array}\right.$(t∈R)求它们的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)是R上的偶函数,其图象关于点$M(\frac{3π}{4},0)$对称,且在区间$[0,\frac{π}{4}]$上是单调函数,求φ和ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象关于直线x=-$\frac{π}{6}$对称,它的周期T=π,则下面结论正确的是(  )
A.f (x) 的图象的一个对称中心为($\frac{π}{6}$,0)
B.f (x) 的图象的两个相邻对称轴之间距离为$\frac{π}{2}$
C.f (x) 在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上是增函数
D.f(-$\frac{π}{6}$+x)=f($\frac{π}{6}$+x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=sin(ωx+$\frac{π}{3}$)(ω>0)相邻两个对称中心的距离为$\frac{π}{2}$,以下哪个区间是函数f(x)的单调减区间(  )
A.[-$\frac{π}{3}$,0]B.[0,$\frac{π}{3}$]C.[$\frac{π}{12}$,$\frac{π}{2}$]D.[$\frac{π}{2}$,$\frac{5π}{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,连接椭圆四个顶点形成的四边形面积为4$\sqrt{2}$,
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点A(1,0)的直线与椭圆C交于点M,N,设P为椭圆上一点,且$\overrightarrow{OM}$+$\overrightarrow{ON}$=t$\overrightarrow{OP}$(t≠0,O为坐标原点),当|$\overrightarrow{OM}$-$\overrightarrow{ON}$|<$\frac{4\sqrt{5}}{3}$时,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.关于x,y的方程x2+y2+kx+2y+k2=0在平面直角坐标系中的图形是个圆,当这个圆取最大面积时,圆心的坐标是(-$\frac{k}{2}$,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设α、β是关于x的方程x2-2mx+m2-1=0的两实数根,且0<α<1,2<β<3,则实数m的取值范围为(1,2).

查看答案和解析>>

同步练习册答案