精英家教网 > 高中数学 > 题目详情
3.用秦九韶算法计算多项式f(x)=2x6+3x5+2x3+5x2+8x+1,当x=0.3时的值,需要做的乘法和加法次数分别是(  )
A.5,-5B.5,6C.6,5D.6,6

分析 把所给的多项式写成关于x的一次函数的形式,依次写出,得到最后结果,从里到外进行运算,结果有6次乘法运算,有6次加法运算,本题也可以不分解,直接从最高次项的次数直接得到结果.

解答 解:∵f(x)=2x6+3x5+2x3+5x2+8x+1=(((((2x+3)x+0)x+2)x+5)x+8)x+1,
∴需要做6次加法运算,6次乘法运算,
故选:D

点评 本题考查用秦九韶算法进行求多项式的值的运算,不是求具体的运算值而是要我们观察乘法和加法的运算次数,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设等差数列{an}的前n项和公式是Sn=5n2+3n,求它的前3项,并求它的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在某次数学考试中,考生的成绩ξ服从正态分布,即ξ~N(100,100),已知满分为150分.
(1)试求考试成绩ξ位于区间(80,120)内的概率;
(2)若这次考试共有2000名考生参加,试估计这次考试及格(不小于90分)的人数.
①P(μ-σ<X<μ+σ)=68.3%;
②P(μ-2σ<X<μ+2σ)=95.4%;
③P(μ-3σ<X<μ+3σ)=99.7%.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.平面上有相异两点A($\sqrt{2}$cosθ,sin2θ),B(0,1),则经过A,B两点的直线倾斜角的取值范围为[0,arctan$\frac{\sqrt{2}}{2}$]∪[$π-arctan\frac{\sqrt{2}}{2},π$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.计算:i1995-i1996=-1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=ln$(\sqrt{1{-x}^{2}}-x)$的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{s}$=(2sinC,-$\sqrt{3}$),$\overrightarrow{t}$=(cos2C,2cos2$\frac{C}{2}$-1),且$\overrightarrow{s}$∥$\overrightarrow{t}$,若sinA=$\frac{2}{3}$,求sin($\frac{π}{3}$-B).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在直角三角形ABC中,a>b>c且b2=ac,则$\frac{a}{b}$=$\frac{\sqrt{2\sqrt{5}+2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.y=3cos(2x+φ)的一个对称中心为($\frac{4π}{3}$,0),则|φ|的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案