精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,平面平面.
(1)证明:平面
(2)求直线与平面所成的角的正切值.
(1)详见解析;(2).

试题分析:(1)连结,在直角梯形中,由勾股定理证明,再证平面平面,从而平面;(2)在直角梯形中,证明,再证平面.
的延长线交于,连结,证明平面,从而可得是直线与平面所成的角.在中,求,在中,求,在中,求
即得直线与平面所成的角的正切值.
(1)连结,在直角梯形中,由
,即
又平面平面,从而平面.
(2)在直角梯形中,由
又平面平面,所以平面.
的延长线交于,连结,则平面
所以是直线与平面所成的角.
中,由,得
中,,得
中,由
所以直线与平面所成的角的正切值是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图平面SAC⊥平面ACB,ΔSAC是边长为4的等边三角形,ΔACB为直角三角形,∠ACB=90,BC=,求二面角S-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱锥中,分别是中点.

(1)求证:
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱柱中,底面是等腰梯形,是线段的中点.

(Ⅰ)求证:
(Ⅱ)若垂直于平面,求平面和平面所成的角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是正方形,侧棱⊥底面 的中点,作于点
(1)求证:平面
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1.

(1)证明:A1C⊥平面BB1D1D;
(2)求平面OCB1与平面BB1D1D的夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正四棱柱ABCD-ABCD中,底面边长为2,侧棱长为4,点E、F分别为棱AB、BC的中点,EF∩BD=G,求点D到平面BEF的距离d。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是两条不同直线,是两个不同的平面,给出下列命题:
①若,则;②若,则;③若,则;④若,则,其中正确的命题是(   )
A.①②B.②③C.③④D.①③

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2013·东城模拟]如图,在四面体ABCD中,若截面PQMN是正方形,则在下列命题中,错误的为(  )
A.AC⊥BD
B.AC∥截面PQMN
C.AC=BD
D.异面直线PM与BD所成的角为45°

查看答案和解析>>

同步练习册答案