精英家教网 > 高中数学 > 题目详情
(2006•重庆一模)已知两个正数x,y满足x+4y+5=xy,则xy取最小值时x,y的值分别为(  )
分析:将方程变形x+4y=xy-5,再由基本不等式转化为关于xy的不等式,根据x和y范围进行求解,结合等号成立的条件和xy的最小值,求出此时x和y对应的值.
解答:解:∵x+4y+5=xy,∴x+4y=xy-5①,
∵x,y是正数,∴x+4y≥4
xy
,当且仅当x=4y时等号成立,
代入①式得,xy-5≥4
xy
,即xy-4
xy
-5≥0,解得t≥5或t≤-1(舍去),
∴x=4y时,有
xy
=5,解得x=10,y=
5
2

故选B.
点评:本题考查了基本不等式的应用,利用基本不等式将方程转化为不等式,再进行求解,注意“一正、二定、三相等”的验证.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2006•重庆一模)定义在R上的奇函数f (x)满足;当x>0时,f (x)=2006x+log2006x,则在R上方程f (x)=0的实根个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆一模)已知函数f(x)=a(2cos2
x2
+sinx)+b

(I)当a=1时,求函数f (x)的单调递增区间;
(Ⅱ)当a<0且x∈[0,π]时,函数f (x)的值域是[3,4],求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆一模)已知f (x)=log2x,则函数y=f-1(1-x)的大致图象是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆一模)设两个非零向量
b
=(
x
x-2
1
x-2
)
c
=(x-a+1,a-4)
,解关于x的不等式
b
c
>2
(其中a>1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•重庆一模)已知函数f(x)=|1-
1x
|

(I)是否存在实数a,b(a<b),使得函数y=f (x)的定义域和值域都是[a,b].若存在,求出a,b的值;若不存在,请说明理由;
(II)若存在实数a,b(a<b),使得函数y=f (x)的定义域为[a,b],值域为[ma,mb](m≠0).求实数m的取值范围.

查看答案和解析>>

同步练习册答案