精英家教网 > 高中数学 > 题目详情

【题目】已知命题 ,命题 ,若 的必要不充分条件,则实数 的取值范围是 .

【答案】
【解析】命题q: ,解得a≤x≤a+1.
∵¬p是¬q的必要不充分条件,
∴q是p的必要不充分条件.
,且等号不能同时成立.
解得
则实数a的取值范围是
【考点精析】解答此题的关键在于理解复合命题的真假的相关知识,掌握“或”、 “且”、 “非”的真值判断:“非p”形式复合命题的真假与F的真假相反;“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;“p或q”形式复合命题当p与q同为假时为假,其他情况时为真,以及对命题的真假判断与应用的理解,了解两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图,且将全班人的成绩记为由右边的程序运行后,输出.据此解答如下问题:

注:图中表示“是”,表示“否”

(1)求茎叶图中破损处分数在各区间段的频数;

(2)利用频率分布直方图估计该班的数学测试成绩的众数,中位数分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2﹣3,g(x)=mex , 若方程f(x)=g(x)有三个不同的实根,则m的取值范围是(
A.
B.
C.
D.(0,2e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系 中的一个椭圆,它的中心在原点,左焦点为 ,右顶点为 ,设点
(1)求该椭圆的标准方程;
(2)若 是椭圆上的动点,求线段 中点 的轨迹方程;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C: 的右顶点为A,离心率为e,且椭圆C过点 ,以AE为直径的圆恰好经过椭圆的右焦点.

(1)求椭圆C的标准方程;
(2)已知动直线l(直线l不过原点且斜率存在)与椭圆C交于P,Q两个不同的点,且△OPQ的面积S=1,若N为线段PQ的中点,问:在x轴上是否存在两个定点E1 , E2 , 使得直线NE1与NE2的斜率之积为定值?若存在,求出E1 , E2的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其函数图象的相邻两条对称轴之间的距离为.

1)求函数的解析式及对称中心;

2)将函数的图象向左平移个单位长度,再向上平移个单位长度得到函数的图象,若关于的方程在区间上有两个不相等的实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实数,设函数,设

(1)求的取值范围,并把表示为的函数

(2)若恒成立,求实数的取值范围;

(3)若存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 为等差数列 的前 项和,其中 ,且

(1)求常数 的值,并写出 的通项公式;

(2)记 ,数列 的前 项和为 ,若对任意的 ,都有 ,求常数 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2002年国际数学家大会在北京召开,会标是以我国古代数学家赵爽的弦图为基础设计.弦图是由四个全等的直角三角形与一个小正方形拼成的一个大正方形(如图)如果小正方形的边长为1,大正方形的边长为5,直角三角形中较小的锐角为,则 ( )

A. B. C. D.

查看答案和解析>>

同步练习册答案