精英家教网 > 高中数学 > 题目详情

【题目】有以下判断:①表示同一函数;②函数的图像与直线最多有一个交点;③不是函数;④若点的图像上,则函数的图像必过点.其中正确的判断有___________

【答案】②④

【解析】对于函数定义域为,而的定义域为所以二者不是同一个函数,故不正确对于根据函数的定义,函数的图象与直线的交点是个或个,即交点最多有一个,故正确;对于 是定义域为 的函数,错误;对于若点的图像上,必有等价于,即函数的图像必过点④正确,综上,正确的判断是②④,,故答案为②④.

方法点睛】本题主要通过对多个命题真假的判断,综合考查函数的定义函数的定义域函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题尽量挖掘出题目中的隐含条件,另外要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂每月生产一种投影仪的固定成本为万元,但每生产台,需要加可变成本(即另增加投入)万元,市场对此产品的月需求量为台,销售的收入函数为(万元),其中是产品售出的数量(单位:百台).

(1)求月销售利润(万元)关于月产量(百台)的函数解析式;

(2)当月产量为多少时,销售利润可达到最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.下图是2017年9月到2018年2月这半年中,某个关键词的搜索指数变化的走势图.

根据该走势图下列结论正确的是( )

A. 这半年中,网民对该关键词相关的信息关注度呈周期性变化

B. 这半年中,网民对该关键词相关的信息关注度不断减弱

C. 从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差

D. 从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形为正方形,ADB,平面ABC平面BCAB=AC=AD=1ABC=45°

1)求证:AB⊥CD

2)求点C到平面D的距离。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的离心率为,且过点

求椭圆的标准方程;

设直线l经过点且与椭圆C交于不同的两点MN试问:在x轴上是否存在点Q,使得直线QM与直线QN的斜率的和为定值?若存在,求出点Q的坐标及定值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC,A,B,C所对的边分别为a,b,c.满足2acosC+bcosC+ccosB=0.

()求角C的大小;

()a=2,ABC的面积为,求C的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭园C +=1(a>b>0)的左、右焦点分别为F1F2.且椭圆C过点(-),离心率e=;P在椭圆C 上,延长PF1与椭圆C交于点Q,RPF2中点.

(I )求椭圆C的方程;

(II )O是坐标原点,记QF1OPF1R的面积之和为S,S的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点A(-,0),B(,0),动点P在y轴上的投影是Q,且.

(1)求动点P的轨迹C的方程;

(2)过F(1,0)作互相垂直的两条直线交轨迹C于点G,H,M,N,且E1,E2分别是GH,MN的中点.求证:直线E1E2恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若,判断函数的零点个数,并说明理由.

查看答案和解析>>

同步练习册答案