精英家教网 > 高中数学 > 题目详情
某学生对函数f(x)=2x•cosx的性质进行研究,得出如下的4个结论,其中正确的结论是(  )
分析:由函数是奇函数判断A的正误;通过给变量取特殊值,举反例可得BC不正确;令M=2,则|f(x)|≤M|x|对一切实数x均成立,所以D对.
解答:解:对于,f(x)=2x•cosx为奇函数,则函数f(x)在[-π,0],[0,π]上单调性相同,所以A错.
对于B,由于f(0)=0,f(π)=-2π,所以B错.
对于C,由 f(0)=0,f(2π)=4π,所以C错.
对于D,|f(x)|=|2x•cosx|=|2x|•|cosx|≤2|x|,令M=2,则|f(x)|≤M|x|对一切实数x均成立,所以D对.
故选D.
点评:本题主要考查三角函数的对称性、单调性、以及函数的最值,通过给变量取特殊值,举反例来说明某个命题不正确,是一种简单有效的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学生对函数f(x)=2xcosx进行研究后,得出如下四个结论:
(1)函数f(x)在[-π,0]上单调递增,在[0,π]上单调递减;
(2)存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立;
(3)点(
π2
,0)
是函数y=f(x)图象的一个对称中心;
(4)函数y=f(x)图象关于直线x=π对称.
其中正确的
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生对函数f(x)=xsinx结论:
①函数f(x)在[-
π
2
π
2
]单调;
②存在常数M>0,使f(x)≤M成立;
③函数f(x)在(0,π)上无最小值,但一定有最大值;
④点(π,0)是函数y=f(x)图象的一个对称中心.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生对函数f(x)=xsinx进行研究,得出如下四个结论:
①函数f(x)在[-
π
2
π
2
]
上单调递增;
②存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立;
③函数f(x)在(0,π)无最小值,但一定有最大值;
④点(π,0)是函数y=f(x)图象的一个对称中心.
其中正确的是(  )
A、③B、②③C、②④D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏模拟)某学生对函数f(x)=2x•cosx的性质进行研究,得出如下的结论:
①函数f(x)在[-π,0]上单调递增,在[0,π]上单调递减;
②点(
π2
,0)
是函数y=f(x)图象的一个对称中心;
③函数y=f(x)图象关于直线x=π对称;
④存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立.
其中正确的结论是

查看答案和解析>>

科目:高中数学 来源: 题型:

某学生对函数f(x)=2x•cosx的性质进行研究,得出如下的结论:
①点(0,0)是函数y=f(x)图象的一个对称中心;
②函数y=f(x)图象关于y轴对称;
③函数f(x)在[-π,0]上单调递增,在[0,π]上也单调递增;
④存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立.
其中正确的结论是
①④
①④

查看答案和解析>>

同步练习册答案