精英家教网 > 高中数学 > 题目详情

( 14分)
已知椭圆C的中心为直角坐标系x0y的原点,焦点在轴上,它的一个项点到两个焦点的距离分别是7和1
(1)求椭圆C的方程
(2)若为椭圆C的动点,M为过P且垂直于轴的直线上的点,
(e为椭圆C的离心率),求点M的轨迹方程,并说明轨迹是什么曲线。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题共14分)

已知椭圆的离心率为

   (I)若原点到直线的距离为求椭圆的方程;

   (II)设过椭圆的右焦点且倾斜角为的直线和椭圆交于AB两点.

        (i)当,求b的值;

        (ii)对于椭圆上任一点M,若,求实数满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题满分14分)已知椭圆的离心率为,右焦点也是抛物线的焦点。     

  (1)求椭圆方程;

  (2)若直线相交于两点。

①若,求直线的方程;

②若动点满足,问动点的轨迹能否与椭圆存在公共点?若存在,求出点的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省四校高三上学期期末联考文科数学 题型:解答题

(本小题满分14分)

已知椭圆的左焦点为,离心率e=,M、N是椭圆上的动

点。

(Ⅰ)求椭圆标准方程;

(Ⅱ)设动点P满足:,直线OM与ON的斜率之积为,问:是否存在定点

使得为定值?,若存在,求出的坐标,若不存在,说明理由。

(Ⅲ)若在第一象限,且点关于原点对称,点轴上的射影为,连接 并延长

交椭圆于点,证明:

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市西城区高三上学期期末考试文科数学试卷 题型:解答题

(本小题满分14分)已知椭圆的一个焦点是,且离心率为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设经过点的直线交椭圆两点,线段的垂直平分线交轴于点

,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省等三校高三2月月考数学文卷 题型:解答题

(本小题满分14分)

已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点M、N,直线与抛物线C相切

(Ⅰ)求抛物线C的方程和点M、N的坐标;

(Ⅱ)求椭圆的方程和离心率.

 

查看答案和解析>>

同步练习册答案