【题目】已知函数,.
(1)讨论函数的单调性;
(2)若,恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,∠DAB=60°.
(1)求证:直线AM∥平面PNC;
(2)求二面角D﹣PC﹣N的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程是(为参数),把曲线横坐标缩短为原来的,纵坐标缩短为原来的一半,得到曲线,直线的普通方程是,以坐标原点为极点,轴正半轴为极轴建立极坐标系;
(1)求直线的极坐标方程和曲线的普通方程;
(2)记射线与交于点,与交于点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有两种理财产品和,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品:
投资结果 | 获利 | 不赔不赚 | 亏损 |
概率 |
产品:
投资结果 | 获利 | 不赔不赚 | 亏损 |
概率 |
注:
(1)若甲、乙两人分别选择了产品投资,一年后他们中至少有一人获利的概率大于,求实数的取值范围;
(2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出的是2017年11月-2018年11月某工厂工业原油产量的月度走势图,则以下说法正确的是( )
A. 2018年11月份原油产量约为51.8万吨
B. 2018年11月份原油产量相对2017年11月增加1.0%
C. 2018年11月份原油产量比上月减少54.9万吨
D. 2018年1-11月份原油的总产量不足15000万吨
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,AB=2AD=2,∠DAB=60°,PA=PC=2,且平面ACP⊥平面ABCD.
(Ⅰ)求证:CB⊥PD;
(Ⅱ)求二面角C-PB-A的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年东京夏季奥运会将设置米男女混合泳接力这一新的比赛项目,比赛的规则是:每个参赛国家派出2男2女共计4名运动员参加比赛,按照仰泳蛙泳蝶泳自由泳的接力顺序,每种泳姿100米且由1名运动员完成,且每名运动员都要出场,若中国队确定了备战该项目的4名运动员名单,其中女运动员甲只能承担仰泳或者自由泳,男运动员乙只能承担蝶泳或者自由泳,剩下的2名运动员四种泳姿都可以承担,则中国队的排兵布阵的方式共有( )
A. 144种B. 24种C. 12种D. 6种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于的方程组的系数矩阵记为,且该方程组存在非零解,若存在三阶矩阵,使得,(0表示零矩阵,即所有元素均为0的矩阵;矩阵对应的行列式为),则
(1)一定为1;
(2)一定为0;
(3)该方程组一定有无穷多解.
其中正确说法的个数是( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com