精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)= x3﹣(1+ )x2+2bx在区间[3,5]上不是单调函数,则函数f(x)在R上的极大值为(
A. b2 b3
B. b﹣
C.0
D.2b﹣

【答案】D
【解析】解:f′(x)=x2﹣(2+b)x+2b=(x﹣b)(x﹣2),

∵函数f(x)在区间[3,5]上不是单调函数,

∴3<b<5,则由f′(x)>0,得x<2或x>b,

由f′(x)<0,得2<x<b,

故f(x)在(﹣∞,2)递增,在(2,b)递减,在(b,+∞)递增,

∴函数f(x)的极大值为f(2)=2b﹣

故选:D.

【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)若函数 上是减函数,求实数 的取值范围;
(2)是否存在整数 ,使得 的解集恰好是 ,若存在,求出 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,不能证明APBC的条件是(  )

A. APPBAPPC

B. APPBBCPB

C. 平面BPC⊥平面APCBCPC

D. AP⊥平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ﹣k( +lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为(
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,一个焦点F(﹣2,0),且长轴长与短轴长的比是
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当 最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=sinx+ cosx的图象向右平移φ(φ>0)个单位长度得到函数y=sinx﹣ cosx的图象,则φ的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体ABCD﹣A1B1C1D1中,AB=AA1=1,E为BC中点.
(1)求证:C1D⊥D1E;
(2)若二面角B1﹣AE﹣D1的大小为90°,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,方程f2(x)﹣af(x)+b=0(b≠0)有六个不同的实数解,则3a+b的取值范围是(
A.[6,11]
B.[3,11]
C.(6,11)
D.(3,11)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知二面角α-MN-β的大小为60°,菱形ABCD在平面β内,A,B两点在棱MN上,∠BAD=60°,E是AB的中点,DO⊥平面α,垂足为O.

(1)证明:AB⊥平面ODE.

(2)求异面直线BC与OD所成角的余弦值.

查看答案和解析>>

同步练习册答案